CIOMP OpenIR
基于多尺度细节的孪生卷积神经网络图像融合算法
刘博; 韩广良; 罗惠元
2021-09-14
发表期刊液晶与显示
卷号36期号:09页码:1283-1293
摘要图像融合将来自不同捕获条件或不同传感器的互补图像进行融合以提高图像的视觉质量。针对这一任务,本文提出一种改进的滚动引导滤波与神经网络相结合的多尺度融合算法。首先,使用孪生卷积神经网络学习图像特征,并以此获得包含源图像显著特征的权值映射图。随后,使用改进的滚动引导滤波对图像进行多尺度分解,结合信息熵使滚动引导滤波权重参数自适应化来实现多尺度自适应分解,并结合非线性映射增强图像细节信息。最后,采用局部能量与权值图相结合的自适应调整融合模式对多尺度图像进行融合。经实验对比,所提方法能够避免出现图像边缘圆晕效应,且能够更好地突出图像边缘、细节纹理特征。另外,与其他算法相比,本文所提出的算法在平均梯度、信息熵、视觉信息保真度以及空间频率等客观评价指标项上均取得了更优的性能表现。
URL查看原文
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/66024
专题中国科学院长春光学精密机械与物理研究所
作者单位1.中国科学院长春光学精密机械与物理研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
刘博,韩广良,罗惠元. 基于多尺度细节的孪生卷积神经网络图像融合算法[J]. 液晶与显示,2021,36(09):1283-1293.
APA 刘博,韩广良,&罗惠元.(2021).基于多尺度细节的孪生卷积神经网络图像融合算法.液晶与显示,36(09),1283-1293.
MLA 刘博,et al."基于多尺度细节的孪生卷积神经网络图像融合算法".液晶与显示 36.09(2021):1283-1293.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于多尺度细节的孪生卷积神经网络图像融合(2573KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[刘博]的文章
[韩广良]的文章
[罗惠元]的文章
百度学术
百度学术中相似的文章
[刘博]的文章
[韩广良]的文章
[罗惠元]的文章
必应学术
必应学术中相似的文章
[刘博]的文章
[韩广良]的文章
[罗惠元]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 基于多尺度细节的孪生卷积神经网络图像融合算法.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。