Changchun Institute of Optics,Fine Mechanics and Physics,CAS
Real-Time 3D Object Detection from Point Cloud through Foreground Segmentation | |
B. Wang; M. Zhu; Y. Lu; J. Wang; W. Gao and H. Wei | |
2021 | |
发表期刊 | IEEE Access |
ISSN | 21693536 |
卷号 | 9页码:84886-84898 |
摘要 | This paper aims to apply real-time light-weight high-precision 3D detection for autonomous driving. We propose LIDAR-based 3D object detection based on foreground segmentation using a fully sparse convolutional network (FS23D). We design a sparse convolutional backbone network and a sparse convolutional detection head to efficiently use the computing and memory resources and accelerate the inference. Instead of using the anchor-based method, we convert the detection problem into a foreground segmentation problem on a bird's-eye view. The sparse convolutional detection head predicts the objectness and bounding box on each active point on the sparse feature map. We design a new oriented bounding box coding method and corresponding loss functions. We predict the endpoints of two mutually perpendicular lines that pass through the foreground active points and indirectly predict the objects' oriented bounding box from these four endpoints. We use the indirectly calculated object center, size, and orientation as inputs of loss functions in the training step. Experiments on the KITTI dataset show that the sparse backbone network we designed is 2.2 times faster and 18.4 times fewer FLOPs than the dense backbone network. The average improvement of the loss functions based on the bounding box code is 1.1% and 0.8% on the BEV and 3D detection, respectively, compared to no addition of these losses. Moreover, FS23D outperforms the state-of-the-art LIDAR-based method in speed and precision for both cars and cyclists. 2013 IEEE. |
DOI | 10.1109/ACCESS.2021.3087179 |
URL | 查看原文 |
收录类别 | SCI ; EI |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/65575 |
专题 | 中国科学院长春光学精密机械与物理研究所 |
推荐引用方式 GB/T 7714 | B. Wang,M. Zhu,Y. Lu,et al. Real-Time 3D Object Detection from Point Cloud through Foreground Segmentation[J]. IEEE Access,2021,9:84886-84898. |
APA | B. Wang,M. Zhu,Y. Lu,J. Wang,&W. Gao and H. Wei.(2021).Real-Time 3D Object Detection from Point Cloud through Foreground Segmentation.IEEE Access,9,84886-84898. |
MLA | B. Wang,et al."Real-Time 3D Object Detection from Point Cloud through Foreground Segmentation".IEEE Access 9(2021):84886-84898. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Real-Time 3D Object (3680KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[B. Wang]的文章 |
[M. Zhu]的文章 |
[Y. Lu]的文章 |
百度学术 |
百度学术中相似的文章 |
[B. Wang]的文章 |
[M. Zhu]的文章 |
[Y. Lu]的文章 |
必应学术 |
必应学术中相似的文章 |
[B. Wang]的文章 |
[M. Zhu]的文章 |
[Y. Lu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论