Changchun Institute of Optics,Fine Mechanics and Physics,CAS
Progressive Guided Fusion Network with Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection | |
J. Wu; G. Han; H. Wang; H. Yang; Q. Li; D. Liu; F. Ye and P. Liu | |
2021 | |
发表期刊 | IEEE Access
![]() |
ISSN | 21693536 |
卷号 | 9页码:150608-150622 |
摘要 | The depth map contains abundant spatial structure cues, which makes it extensively introduced into saliency detection tasks for improving the detection accuracy. Nevertheless, the acquired depth map is often with uneven quality, due to the interference of depth sensors and external environments, posing a challenge when trying to minimize the disturbances from low-quality depth maps during the fusion process. In this article, to mitigate such issues and highlight the salient objects, we propose a progressive guided fusion network (PGFNet) with multi-modal and multi-scale attention for RGB-D salient object detection. Particularly, we first present a multi-modal and multi-scale attention fusion model (MMAFM) to fully mine and utilize the complementarity of features at different scales and modalities for achieving optimal fusion. Then, to strengthen the semantic expressiveness of the shallow-layer features, we design a multi-modal feature refinement mechanism (MFRM), which exploits the high-level fusion feature to guide the enhancement of the shallow-layer original RGB and depth features before they are fused. Moreover, a residual prediction module (RPM) is applied to further suppress background elements. Our entire network adopts a top-down strategy to progressively excavate and integrate valuable information. Compared with the state-of-the-art methods, experimental results demonstrate the effectiveness of our proposed method both qualitatively and quantitatively on eight challenging benchmark datasets. 2013 IEEE. |
DOI | 10.1109/ACCESS.2021.3126338 |
URL | 查看原文 |
收录类别 | SCI ; EI |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/65557 |
专题 | 中国科学院长春光学精密机械与物理研究所 |
推荐引用方式 GB/T 7714 | J. Wu,G. Han,H. Wang,et al. Progressive Guided Fusion Network with Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection[J]. IEEE Access,2021,9:150608-150622. |
APA | J. Wu.,G. Han.,H. Wang.,H. Yang.,Q. Li.,...&F. Ye and P. Liu.(2021).Progressive Guided Fusion Network with Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection.IEEE Access,9,150608-150622. |
MLA | J. Wu,et al."Progressive Guided Fusion Network with Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection".IEEE Access 9(2021):150608-150622. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Progressive Guided F(6898KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[J. Wu]的文章 |
[G. Han]的文章 |
[H. Wang]的文章 |
百度学术 |
百度学术中相似的文章 |
[J. Wu]的文章 |
[G. Han]的文章 |
[H. Wang]的文章 |
必应学术 |
必应学术中相似的文章 |
[J. Wu]的文章 |
[G. Han]的文章 |
[H. Wang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论