Changchun Institute of Optics,Fine Mechanics and Physics,CAS
Joint Dense 3D Reconstruction Method for Endoscopic Images of Weak Texture Scenes | |
Y. Gu; J. Lv; J. Bo; B. Zhao; Y. Chen; J. Tao; Y. Qin; W. Wang and J. Liang | |
2021 | |
发表期刊 | IEEE Access (IF:3.745[JCR-2019],4.076[5-Year]) |
ISSN | 21693536 |
卷号 | 9页码:138254-138266 |
摘要 | Endoscopic inspection is an important non-destructive testing method. Traditional 3D endoscopic reconstruction methods, such as polarization reconstruction and shading reconstruction, have the drawbacks of not determining the object's actual size and positional information. The stereo vision method is limited by its operating principles and has the issue of sparse reconstructed point clouds. These drawbacks greatly restrict the applications of the endoscope. Therefore, this work proposes a joint dense 3D reconstruction method for endoscopic images of weak texture scenes. This method uses the shading reconstruction normal to correct the polarization reconstruction normal, then uses coordinate conversion and point cloud fusion to convert the polarization and shading 3D reconstruction results from the pixel coordinate system to the world coordinate system. Finally combines the reconstruction results from the world coordinate system's polarization, shading, and stereo vision. The fusion coefficients are obtained by solving the minimum error model, and then a complete and detailed 3D reconstruction surface was obtained in the world coordinate system. This method could avoid the difficulty of obtaining real coordinates for the 3D reconstruction of polarization and shading and prevent the issue of the sparse point cloud afforded by stereo vision reconstruction for weak texture scenes. The combined dense 3D reconstruction method had an average error of 1% for length measurement of a 3D curve, which is highly significance for industrial endoscopic inspection. 2013 IEEE. |
DOI | 10.1109/ACCESS.2021.3118345 |
URL | 查看原文 |
收录类别 | SCI ; EI |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/65364 |
专题 | 中国科学院长春光学精密机械与物理研究所 |
推荐引用方式 GB/T 7714 | Y. Gu,J. Lv,J. Bo,et al. Joint Dense 3D Reconstruction Method for Endoscopic Images of Weak Texture Scenes[J]. IEEE Access,2021,9:138254-138266. |
APA | Y. Gu.,J. Lv.,J. Bo.,B. Zhao.,Y. Chen.,...&W. Wang and J. Liang.(2021).Joint Dense 3D Reconstruction Method for Endoscopic Images of Weak Texture Scenes.IEEE Access,9,138254-138266. |
MLA | Y. Gu,et al."Joint Dense 3D Reconstruction Method for Endoscopic Images of Weak Texture Scenes".IEEE Access 9(2021):138254-138266. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Joint Dense 3D Recon(2541KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Y. Gu]的文章 |
[J. Lv]的文章 |
[J. Bo]的文章 |
百度学术 |
百度学术中相似的文章 |
[Y. Gu]的文章 |
[J. Lv]的文章 |
[J. Bo]的文章 |
必应学术 |
必应学术中相似的文章 |
[Y. Gu]的文章 |
[J. Lv]的文章 |
[J. Bo]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论