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ABSTRACT Endoscopic inspection is an important non-destructive testing method. Traditional 3D endo-
scopic reconstruction methods, such as polarization reconstruction and shading reconstruction, have the
drawbacks of not determining the object’s actual size and positional information. The stereo vision method
is limited by its operating principles and has the issue of sparse reconstructed point clouds. These drawbacks
greatly restrict the applications of the endoscope. Therefore, this work proposes a joint dense 3D reconstruc-
tion method for endoscopic images of weak texture scenes. This method uses the shading reconstruction
normal to correct the polarization reconstruction normal, then uses coordinate conversion and point cloud
fusion to convert the polarization and shading 3D reconstruction results from the pixel coordinate system to
the world coordinate system. Finally combines the reconstruction results from the world coordinate system’s
polarization, shading, and stereo vision. The fusion coefficients are obtained by solving the minimum error
model, and then a complete and detailed 3D reconstruction surface was obtained in the world coordinate
system. This method could avoid the difficulty of obtaining real coordinates for the 3D reconstruction
of polarization and shading and prevent the issue of the sparse point cloud afforded by stereo vision
reconstruction for weak texture scenes. The combined dense 3D reconstruction method had an average
error of <1% for length measurement of a 3D curve, which is highly significance for industrial endoscopic
inspection.

INDEX TERMS Endoscopic detection, dense point cloud, 3D reconstruction.

I. INTRODUCTION
Endoscopic inspection is a type of non-destructive inspec-
tion method that overcomes the visual limitations of the
human eye. It can effectively detect damage and defects
inside equipment through narrow channels that cannot be
directly observed, and it avoids unnecessary damage resulting
from disassembly and installation of the equipment [1]. This
leads to significant benefits related to reduced testing time
and costs. Endoscopic inspections are widely used in many
fields, including for electronics, shipbuilding, and machinery
manufacturing. Although traditional 2D endoscopic images
contain a wealth of information, information on the actual
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size and depth of the damage and defects cannot be obtained
because the image size is in pixels, and the planar image
does not contain depth information. Such images are judged
based on the experience of the operator. Hence, it is diffi-
cult to guarantee the reliability of the endoscopic detection
results [2], [3]. Three-dimensional reconstruction is an impor-
tant research direction in computer vision, which can create
a 3D model of a scene based on 2D images. This affords
endoscopic detection with more abundant image information,
and it is more intuitive for the inspector to analyze a multi-
dimensional image.

3D reconstruction methods mainly include polariza-
tion [4], shading [5], and stereo vision [6], [7]. The polar-
ization 3D reconstruction method establishes the relationship
between the surface normal of the object and the polarization
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information by analyzing the polarization characteristics of
the reflected light of the object and then restores the surface
shape of the object. The ambiguity of surface normal is the
key issue of polarization reconstruction. Huynh et al. [8] used
wavelength as a constraint. For the first time, proposed a
method to obtain the surface normal and refractive index of
polarization reconstruction from a single viewpoint simul-
taneously and used synthetic and real images to prove the
method’s effectiveness. This method assumed that the surface
is convex and used the property that the normal point to the
outside to eliminate ambiguity, and calculated the optimal
height of the singular point to eliminate the ambiguity of
the concave-convex mixed surface. The process was rela-
tively complicated [8]. Smith et al. [9] established a linear
equation system using polarization images, which solved
the problem of surface normal ambiguity while solving the
polarization reconstruction surface height. This method was
suitable for objects with uniform albedo. It can be used for
depth estimation under single, uncalibrated illumination con-
ditions, but it was not precise to estimate the refractive index
of the object [9]. The shading 3D reconstruction method
uses brightness changes of the measured object surface to
obtain 3D shape information of the object. Zhang et al. [10]
developed a shape restoration algorithm for weakly textured
regions. They used the Landsat 7 ETM+ Band 4 image and
SRTM 90m global DEM data as reference to evaluate the
algorithm. This method required a Lambertian model of
the variant albedo map to approximate the reflectivity of the
satellite image [10]. Yang et al. [11] used synthetic images to
train a deep network to achieve shading reconstruction. They
used evolutionary algorithms to jointly evolve 3D shapes and
train deep networks for the first time. They achieved state-
of-the-art performance on authentic images without using an
external shape dataset [11]. But whether synthetic image or
actual image, lighting [12], [13] and surface albedo [14]–[16]
conditions are required. The stereo vision method obtains
2D images of an object via two or more perspectives and
uses the principle of triangulation to calculate the 3D shape
of the object. Gai et al. [17] used the line constraint to
reduce the search range, and an ant colony algorithm was
used to optimize the stereo matching feature search func-
tion in the proposed search range. By establishing the
stereo matching optimization model of the ant colony algo-
rithm, the global optimization solution of stereo matching in
3D reconstruction based on binocular vision system was
realized. This method could not obtain dense stereo
matching results, although it improved the convergence
speed and accuracy of the stereo matching process [17].
Hernandez-Beltran et al. [18] proposed a parallel implemen-
tation method of stereo vision algorithm for 3D scene recon-
struction. The algorithm estimated the disparity map from
a pair of rectified stereo images using an adaptive template
matched filter. The estimated disparity was utilized to retrieve
the 3D information by considering the stereo camera’s intrin-
sic parameters. This algorithm improved the accuracy and
speed of 3D reconstruction [18].

Polarization-based and shading-based 3D reconstruction
methods can only obtain the relative depth in the pixel
coordinate system, but they have good detail and dense
reconstruction. The stereo vision method is limited by its
matching principle [19]–[22], and the reconstruction point
cloud of weak texture objects is sparse but can get accurate
world coordinates from stereo vision. The complementarity
between them has attracted many researchers to research and
development. Haines and Wilson [23] proposed a method
combining stereo and shading. They used the belief propaga-
tionmethod to obtain the stereomatching result and estimated
the reflectance and surface normal vector of each point, and
then used iteration to get a continuous estimate of the dis-
parity [23]. Maurer et al. [24] proposed a joint variational
method that combined SFS cues with minimisation frame-
work. The Lambertian SFS method combined 3D model
with the generated energy function, supplemented with the
detail-preserving anisotropic second-order smoothing term.
It extended the resulting model to estimate depth, albedo, and
illuminance jointly. This method is suitable for objects with
uneven albedo and scenes with unknown illumination [24].

In order to overcome the limitations of different recon-
struction methods and obtain a more accurate dense
3D reconstruction surface in theworld coordinate system, this
paper proposes a joint dense 3D reconstruction method for
endoscopic images of weak texture scenes, which combines
SFP, SFS, and stereo vision. The method uses the surface
normal of the shading reconstruction reliably and quickly
estimates the polarization reconstruction’s normal to solve
the ambiguity. And use coordinate conversion and point cloud
fusion to convert the polarization and shading reconstruction
dense point cloud from the pixel coordinate system to the
world coordinate system. Then combine the reconstruction
results from the world coordinate system’s polarization, shad-
ing, and stereo vision. The fusion coefficients are obtained by
solving the minimum error model. Finally, bring the coeffi-
cients into the model to get the joint 3D reconstruction result.
This method could realize dense 3D reconstruction of the
weak texture target in the world coordinate system. By build-
ing an experimental optical platform, the effectiveness of the
joint dense reconstruction method was verified.

II. JOINT DENSE 3D RECONSTRUCTION METHOD
The schematic diagram of the joint dense 3D reconstruction
method in the world coordinate system is shown in Fig. 1.
In the figure, OwXwYwZw represents the world coordinate
system, which is the reference system for describing the true
position of the target object. O0X0Y0Z0 is the object coor-
dinate system, which can rotate with the rotating platform.
OcXcYcZc is the camera coordinate system with origin at
the position of the camera’s optical center. ouv is the pixel
coordinate system of the image, which uses pixels as the
unit. op xy is the physical coordinate system of the image,
in which the x axis and the y axis are parallel to the u axis and
the v axis, respectively.
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FIGURE 1. Schematic diagram of the joint dense 3D reconstruction
method in the world coordinate system.

Step 1: Obtain the shading reconstruction dense point
cloud in the pixel coordinate system. Take the horizontal
direction as the reference direction, and use the polarizer in
the directions 0◦, 45◦, 90◦, and 135◦ to obtain polarization
images I0, I45, I90, and I135, respectively. Then get the light
intensity image I = I0 + I90. Assuming that the imaging
geometry is an orthogonal projection, calculate the brightness
equations E for the Lambertian surface:

E(u, v) = R(p, q) =
1+ pps + qqs√

1+ p2 + q2
√
1+ p2s + q2s

, (1)

where E (u, v) is the brightness of the pixel (u, v), R is the
reflectance, p and q are the gradients of (u, v, zs (u, v)),
zs (u, v) is the shading reconstruction surface, τ and σ are
the tilt and slant of the lighting direction. There:

p =
∂zs(u, v)
∂u

, q =
∂zs(u, v)
∂v

, (2)

ps =
cos τ sin σ

cos σ
, qs =

sin τ sin σ
cos σ

, (3)

Tsai and Shah [25] discrete approximation of the surface
gradient is:

p = zs(u, v)− zs(u− 1, v)

q = zs(u, v)− zs(u, v− 1), (4)

Equation (1) can be written as:

0 = f (E(u, v), zs(u, v), zs(u− 1, v), zs(u, v− 1))

= E(u, v)− R(zs(u, v)− zs(u− 1, v),

zs(u, v)− zs(u, v− 1)), (5)

For a fixed point (u, v) and a given image E , the Jacobian
iterationmethod is used to solve the linear system of the given
depth map Zn−1s , and the Taylor series expansion of the first
order f is simplified as:

0 = f (zs(u, v)) ≈ f (zn−1s (u, v))

+ (zs(u, v)− zn−1s (u, v))
d

dzs(u, v)
f (zn−1s (u, v)), (6)

Let zs (u, v) = zns (u, v), the shading 3D reconstruction
surface Zs (u, v) in the pixel coordinate system is obtained by
iteration:

zns (u, v) = zn−1s (u, v)−
f (zn−1s (u, v))
df (zn−1s (u,v))
dzs(u,v)

, (7)

Then obtain the shading reconstruction point cloud in the
pixel coordinate system as (ur , vr , zrs ), where r = 1, 2, . . . ,m,
and m is the number of all pixels on the detector.
Step 2: Use the shading reconstruction’s surface normal to

correct the polarization reconstruction’s surface normal and
obtain the dense point cloud of the polarization reconstruction
in the pixel coordinate system. The degree of polarization ρ
and the polarization phase angle φ are as follows:

ρ =

√
(I0 − I90)2 + (I45 − I135)2
1
2 (I0 + I45 + I90 + I135)

, (8)

φ =
1
2
tan−1(

I45 − I135
I0 − I90

), (9)

where I0, I45, I90, and I135 are the intensity of linearly
polarized light in the directions of 0◦, 45◦, 90◦ and 135◦.
According to the Fresnel principle, the law of refraction, and
the definition of the degree of polarization, we can obtain
the relationship between the zenith angle and the degree of
polarization, and the azimuth angle and the phase angle of
polarization:

ρ =
(n− 1/n)2 sin2 θ

2+ 2n2 − (n+ 1/n)2 sin2 θ + 4 cos θ
√
n2 − sin2 θ

,

(10)

ϕ = φ or ϕ = φ + 180◦, (11)

where n represents the refractive index of the object, ρ is the
degree of polarization, θ represents the zenith angle, ϕ is the
azimuth angle, and φ is the polarization phase angle.

The zenith angle θ and the azimuth angle ϕ jointly deter-
mine the surface normal of the target, and the expression of
the surface normal is:

En =

 tan θ cosϕ
tan θ sinϕ

1

 =
 tan θ cosφ
tan θ sinφ

1



=


−
∂zp(u,v)
∂u

−
∂zp(u,v)
∂v

1

 , (12)

Or:

En =

 tan θ cosϕ
tan θ sinϕ

1

 =
 tan θ cos(φ + 180)
tan θ sin(φ + 180)

1



=


∂zp(u,v)
∂u

∂zp(u,v)
∂v

1

 , (13)
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where zp (u, v) is the polarization reconstruction surface,
∂zp(u,v)
∂u and ∂zp(u,v)

∂v are the gradients of (u, v, Zs (u, v)).
The formula (12) and (13) shows that there is an ambiguity

in the polarization reconstruction surface normal. The prior
information of the shading reconstruction surface normal is
used to correct the polarization reconstruction surface normal
gradient, when:∣∣∣∣∂zs(u, v)∂u

−
∂zp(u, v)
∂u

∣∣∣∣ ≥ ∣∣∣∣∂zs(u, v)∂u
+
∂zp(u, v)
∂u

∣∣∣∣ , (14)

The polarization and shading reconstruction are in the
opposite direction of the gradient of u, requiring a rotation
of 180◦. Otherwise, they’re going in the same direction con-
cerning the gradient of u, so we don’t have to change it.
The same can be obtained as follows:
When∣∣∣∣∂zs(u, v)∂v

−
∂zp(u, v)
∂v

∣∣∣∣ ≥ ∣∣∣∣∂zs(u, v)∂v
+
∂zp(u, v)
∂v

∣∣∣∣ , (15)

The polarization and shading reconstruction are in the
opposite direction of the gradient of v, requiring a rotation
of 180◦. Otherwise, they’re going in the same direction con-
cerning the gradient of v, so we don’t have to change it.
After obtaining the corrected normal vector, the relative

depth of each (u, v) point in the pixel coordinate system
can be obtained by integrating, and the polarization recon-
struction dense point cloud in the pixel coordinate system is
(ur , vr , zrp) where r = 1, 2, . . . ,m, m is the number of all
pixels on the detector.
Step 3: Obtain the rotating stereo vision reconstruction

sparse point cloud in the world coordinate system. Rotating
stereo vision is a special case of traditional stereo vision.
A single-camera is used to obtain image from different direc-
tions when the motion parameters of the object are known.
After a certain angle rotates the object, the polarizer is rotated
to obtain the polarization images of 0◦, 45◦, 90◦, and 135◦ in
the second viewing angle, and the total intensity image before
and after the object is rotated is used as the image pair for
stereo vision reconstruction. The stereo matching algorithm
of sift feature realizes the detection and matching of fea-
ture points [26]. Assuming the pixel coordinates (ui1, v

i
1) of

the feature matching point i before rotation, the relationship
between the pixel coordinates and the world coordinates is:

Zc1


ui1

vi1

1

 = M1


Xw
Yw
Zw
1



=


m1
11

m1
21

m1
31

m1
12

m1
22

m1
32

m1
13

m1
23

m1
33

m1
14

m1
24

m1
34



Xw
Yw
Zw
1

 ,
(16)

whereM1 is the projection matrix before rotation, which can
be calculated through calibration of the endoscope system.

Zc1 is the Z coordinate in the camera coordinate system.
The coordinate of the feature matching point i after rotating
by 1 angle is (ui2, v

i
2), and its relationship with the world

coordinates is:

Zc2


ui2

vi2

1

 = M1


cos1 0 − sin1 0
0 1 0 0

sin1 0 cos1 0
0 0 0 0



Xw
Yw
Zw
1



= M2


Xw
Yw
Zw
1



=


m2
11

m2
21

m2
31

m2
12

m2
22

m2
32

m2
13

m2
23

m2
33

m2
14

m2
24

m2
34



Xw
Yw
Zw
1

 ,
(17)

M2 is the projection matrix after rotation, and Zc2 is the
Z coordinate in the camera coordinate system. Four equations
about Xw, Yw, Zw can be obtained by formulas (16) and (17).
The least-square method is used to obtain the stereo vision
point cloud in the world coordinate system (X i, Y i, Z i) by
combining the equations, where i = 1, 2, . . . , n, n is the
number of feature matching points.
Step 4: Extract the sparse point cloud corresponding to the

feature matching point in the pixel coordinate system. The
coordinates obtained by the stereo matching algorithm [26]
are floating-point numbers to find the feature matching point.
Therefore, the rounding method is used on (ui1, v

i
1) to get

(ui, vi). Then take the z coordinate of the polarization and
shading reconstruction in the pixel coordinate system corre-
sponding to the position of (ui, vi) to obtain the polarization
reconstruction sparse point cloud (ui, vi, zip) and the shading
reconstruction sparse point in the pixel coordinate system
Cloud (ui, vi, zis).
Step 5: Coordinate conversion and point cloud fusion.

From the definition of pixel coordinate system, physical coor-
dinate system, and camera coordinate system, we can see
that their horizontal and vertical axis directions are parallel
to each other, u // x // Xc, v // y // Yc. When the world
coordinate system is also parallel to the three coordinate
axes of the camera coordinate system and the rotation axis
Y0 // v // y // Yc of the stereo vision, the conversion param-
eters between the coordinate systems are only translation
parameters and scaling factors. Therefore, the least-squares
method was used to obtain the conversion relationship of
the polarization reconstruction point cloud of the feature
matching point from the pixel coordinate system to the world
coordinate system:

X i = kpxui + Tpx
Y i = kpyvi + Tpy
Z i = kpzzip + Tpz, (18)
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In the same way, the conversion relationship of the shading
reconstruction point cloud of the feature matching point from
the pixel coordinate system to the world coordinate system
can be obtained:

X i = ksxui + Tsx
Y i = ksyvi + Tsy
Z i = kszzis + Tsz, (19)

where kpx , kpy, kpz and Tpx , Tpy, Tpz are the scaling factors
and translation parameters, respectively, of the polarization
3D reconstruction coordinate transformation in the three
coordinate axis directions. ksx , ksy, ksz and Tsx , Tsy, Tsz are
the scaling factors and translation parameters of the shading
3D reconstruction coordinate transformation in the three
coordinate axis directions. They are all obtained via
least-squares fitting of the coordinate positions of the feature
matching points.

Through coordinate conversion, the polarization recon-
struction point cloud (X ip, Y

i
p, Z

i
p), shading reconstruction

point cloud (X is, Y
i
s , Z

i
s), scale scaling factor k and translation

parameter T of the featurematching point in theworld coordi-
nate system can be obtained. The polarization reconstruction
dense point cloud (X rp , Y

r
p , Z

r
p ) and shading reconstruction

dense point cloud (X rs , Y
r
s , Z

r
s ) of the object in the world

coordinate system can be obtained by using the obtained scale
scaling factor k and translation parameter T for point cloud
fusion. Since the result of polarization reconstruction sparse
point cloud (ui, vi, zip) and shading reconstruction sparse point
cloud (ui, vi, zis) are the same in the x and y directions:
kpx = ksx , kpy = ksy, Tpx = Tsx , Tpy = Tsy, thus their
X and Y coordinates of the matching point after coordinate
conversion are the same: X ip = X is, Y

i
p = Y is , and their X and

Y coordinates are the same after fusion: X rp = X rs , Y
r
p = Y rs .

Figure 2 shows the coordinate conversion and point cloud
fusion diagram.
Step 6: Combine the polarization, shading, and stereo

vision in the world coordinate system. Although the two
dense point clouds in the world coordinate systems of polar-
ization and shading can be obtained after step 5, we can
obtain higher reconstruction accuracy by fusing them, and
transform the reconstruction problem into an optimization
problem. We join the stereo vision sparse point cloud
(X i, Y i, Z i) and the polarization reconstruction sparse point
cloud (X i, Y i, Z ip) and shading reconstruction sparse point
cloud (X i, Y i, Z is), and estimate the best scale conversion
factor. The conversion error in X , Y , and Z direction is
minimized. The minimum error function we constructed is:

Eerror_X =
n∑
i=1

(X i − ωpXX ip − ωsXX
i
s)
2

Eerror_Y =
n∑
i=1

(Y i − ωpYY ip − ωsYY
i
s )
2

Eerror_Z =
n∑
i=1

(Z i − ωpZZ ip − ωsZZ
i
s)
2, (20)

FIGURE 2. Coordinate conversion and point cloud fusion diagram.

where i = 1, 2, . . . , n, n is the number of feature points. ωpX ,
ωpY , andωpZ are the scale factors in theX , Y , and Z directions
for polarization reconstruction, and ωsX , ωsY , and ωsZ are
the scale factors in the X , Y , and Z directions for shading
reconstruction. Since X ip = X is, Y

i
p = Y

i
s , we can simplify the

X and Y direction of the minimum error function:

Eerror_X =
n∑
i=1

(X i − ωpXX ip − ωsXX
i
s)
2

=

n∑
i=1

(X i − 2 · ωpXX ip)
2

=

n∑
i=1

(X i − 2 · ωsXX is)
2

Eerror_Y =
n∑
i=1

(Y i − ωpYY ip − ωsYY
i
s )
2

=

n∑
i=1

(Y i − 2 · ωpYY ip)
2

=

n∑
i=1

(Y i − 2 · ωsYY is )
2, (21)

Compare the formula in coordinate conversion:

X i = kpxui + Tpx = ksxui + Tsx
Y i = kpyui + Tpy = ksyui + Tsy, (22)

The minimum error function and coordinate conversion
both perform least-squares on all feature matching points.
These formulas are the same, and the XY coordinates of
the polarization or shading dense point cloud in the world
coordinate system can be used instead of the fusion step.

Multiple linear regression analysis is a statistical analysis
method that studies the relationship between a dependent
variable and two or more independent variables. There-
fore, we can transform the minimum error function in
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the Z direction into a multiple linear regression model:

Z i = ω0 + ωpZ ip + ωsZ
i
s + ε, (23)

here, ω0 is a constant term, ωp and ωs are regression coeffi-
cients in the linear regression model, and ε is a random error
with a mean value of 0 and variance of σ 2. The least-squares
method was used to obtain the values of ω0, ωp, and ωs, and
the linear regression model was obtained. We bring the polar-
ization reconstruction dense point cloud (X rp , Y

r
p , Z

r
p ) and the

shading reconstruction dense point cloud (X rs , Y
r
s , Z

r
s ) into

this model and obtain the joint dense 3D reconstruction point
cloud in the world coordinate system:

Z r = ω0 + ωpZ rp + ωsZ
r
s

X r = X rp = X rs
Y r = Y rp = Y rs , (24)

where r = 1, 2, . . . ,m, m is the number of all pixels on the
detector, and (X r , Y r , Z r ) represents the joint dense point of
the object in the world coordinate system.

III. 3D CURVE LENGTH MEASUREMENT
The size parameters of the object can be obtained by measur-
ing the length of the 3D curve, and the size of internal defects
in industrial equipment can be determined.

Traditional stereo vision endoscopic detection cannot pro-
vide complete point cloud information of the object, and there
are only a few characteristic points that can be obtained via
curve measurement. Hence, it is difficult to obtain accurate
curve lengths. Current endoscopic length detection only mea-
sures the depth of a certain point of the object to the camera
or the linear distance between two characteristic points on the
object. The joint dense 3D reconstruction method proposed
in this paper can be used to obtain the dense point cloud in
the world coordinate system that corresponds to each pixel;
additionally, the reconstructed object information is more
accurate than traditional stereo vision, and the measurement
results are more accurate. Figure 3 is a schematic diagram of
the 3D curve length measurement.

FIGURE 3. Schematic diagram of 3D curve length measurement.

The specific measurement steps are as follows. First,
the light intensity image of the target object is obtained,
and the Canny edge detection method [27] is used to extract

the curve. Then, the joint dense 3D reconstruction method
is used to map each pixel on this curve to the world coor-
dinate system to obtain the point cloud of the curve, where
j = 1, 2, . . . , l, and l is the number of pixels in the detec-
tion curve. The polynomial fitting method is used to fit
the 3D curve of the point cloud. During the fitting pro-
cess, the segmented fitting method is used. The order of
the polynomial is constantly adjusted to prevent under- or
over-fitting and ensure the accuracy of the fitting results.
Finally, the Euclidean distance calculation method is used to
obtain the length of the curve L:

L =
l−1∑
j=1

√
(Xj+1 − Xj)2 + (Yj+1 − Yj)2 + (Zj+1 − Zj)2,

(25)

IV. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL SYSTEM CONSTRUCTION AND
ENDOSCOPE SYSTEM CALIBRATION
The experimental system was then built to verify the
effectiveness of the joint dense 3D reconstruction method,
as shown in Fig. 4. The systemmainly includes: an endoscope
system, cold light source, Thorlabs WP25M-VIS wire grid
polarizer, and the object to be measured. The endoscope sys-
temwas composed of a SONYXCG-C130 detector, an indus-
trial endoscope, and an adapter lens.

FIGURE 4. ¬ Detector;  Adapter lens; ® Endoscope; ¯ Rotating mount
with wire grid polarizer; ° Cold light source; and ± Object to be
measured.

The experimental system was used to calibrate the monoc-
ular endoscope, and calibration was primarily carried out
for the internal parameters and distortion coefficients. This
paper adopts a calibration method based on a 2D checker-
board calibration board [28], which has the advantages of
convenient implementation and high calibration accuracy.
First, the checkerboard is located in the plane of the world
coordinate system Z = 0, then, the world coordinates of any
corner point on the checkerboard is (X , Y , 0), and conversion
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is carried out between the pixel coordinate system of this
point and the world coordinate system:

µ

 uv
1

 = A
[
R t

]
X
Y
0
1

 = A
[
r1 r2 t

]XY
1

 ,
(26)

here, µ is the scale factor. (u, v, 1) are the image pixel coordi-
nates expressed in homogeneous coordinates. (X , Y , Z, 1) are
the world coordinate expressed in homogeneous coordinates.
A represents the internal parameter matrix of the camera,
R represents the rotation matrix, ri is the ith column vector
of R, and t represents the translation matrix. The camera
internal parameter matrix A is:

A =

 fu 0 u0
1 fv v0
0 0 1

 , (27)

here, fu and fv are the pixel metric representations of the focal
length of the endoscope system in the x and y directions, and
(u0, v0) are the principal point coordinates of the camera.
Formula (26) is described by the homography matrix H:

µ

 uv
1

 = H

XY
1

 , (28)

H can be obtained using the points corresponding to the
checkerboard plane and the imaging plane. Because the rota-
tion matrix is an orthogonal matrix, according to the limited
condition that the inner product of any two column vectors
of H is 0 and the module is 1, the least-squares solution of
the equation obtained from multiple calibration images was
obtained via singular value decomposition (SVD), and each
internal parameter of the endoscope system was obtained.

The endoscope system has a small size and a large field
of view. Hence, each image must be undistorted after the
endoscope is calibrated. The correction of radial distortion
is as follows:

xdr = x(1+ s1r2 + s2r4)

ydr = y(1+ s1r2 + s2r4), (29)

here, (x, y) and (xdr , ydr ) are the undistorted image coordi-
nates and the distorted image coordinates, respectively, s1 and
s2 are the radial distortion parameters, and r is the distance
from the corresponding pixel to the image center, where
r2 = x2 + y2.
We constructed a checkerboard pattern calibration board

with 9∗6 corner points, as shown in Fig. 5.
The obtained 10 images of the calibration board were

selected for calibration, and the obtained calibration parame-
ters of the endoscope system are shown in Table 1.

The reprojection error method was used to judge the cali-
bration accuracy of the endoscope system parameters, and the
average reprojection error was calculated to be 0.21 pixels,
which meets the calibration requirements. The calibration
reprojection error of the endoscope system is shown in Fig. 6.

FIGURE 5. Calibration board image.

TABLE 1. Camera calibration parameters.

FIGURE 6. Reprojection error of the endoscope system.

B. JOINT DENSE 3D RECONSTRUCTION EXPERIMENT
The experimental system was used to investigate a white
jade teacup, and the joint dense 3D reconstruction algorithm
was verified. First rotate the polarizer to obtain polarization
images of 0◦, 45◦, 90◦, and 135◦, and then calculate the
intensity image, polarization degree image, and polarization
phase angle image. Use the shading reconstruction algorithm
for the light intensity image to obtain the shading 3D recon-
struction surface in the pixel coordinate system. Use the shad-
ing reconstruction surface normal to correct the polarization
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reconstruction normal and obtain the polarization 3D recon-
struction surface in the pixel coordinate system, as shown
in Figure 7.

FIGURE 7. (a) Intensity image of the teacup. (b) Degree of polarization.
(c) Polarization phase angle. (d) Shading reconstruction surface in pixel
coordinate system. (e) Polarization reconstruction surface of uncorrected
normal in pixel coordinate system. (f) Polarization reconstruction surface
after correcting normal in pixel coordinate system.

The object is rotated at a certain angle, and the polarizer is
also rotated to obtain polarization images at different angles.
Before and after the object is rotated, the intensity image is
used as the image pair for stereo vision. In the experiment,
1463 pairs of feature matching points are obtained by using
the stereo matching algorithm based on sift features [26].
The stereo vision point cloud in the world coordinate system
calculated using equations (16) and (17) is shown in Fig. 8.

FIGURE 8. Stereo vision reconstruction point cloud.

We use the polarization reconstruction and shading
reconstruction coordinates of the feature points in the pixel
coordinate system to perform least-squares fitting with the
coordinates in the world coordinate system and obtain the
scaling factor and the translation parameter in the three
directions of XYZ. The partial figure of feature matching
points of stereo vision and polarization reconstruction in the
Z direction is shown in Fig. 9:

Then, coordinate conversion and fusion are performed on
the polarization reconstruction point cloud and the shading
reconstruction point cloud. The obtained polarization recon-
struction surface and the shading reconstruction surface in the
world coordinate system are shown in Fig. 10.

FIGURE 9. Figure of feature matching points of stereo vision and
polarization reconstruction in the Z direction.

FIGURE 10. (a) Polarization 3D reconstruction surface in the world
coordinate system after coordinate conversion. (b) Shading
3D reconstruction surface in the world coordinate system
after coordinate conversion.

After coordinate conversion, the Z coordinates of the
feature matching points of stereo vision are used as the
dependent variable, and the Z coordinates of the polarization
reconstruction and shading reconstruction as the independent
variables. By inputting them into Eqn. (24) we can obtain the
coefficients of the linear regression model. The coefficients
obtained are ω0 = 0, ωp = 0.5701, and ωs = 0.4388, and the
final joint dense 3D reconstruction surface of the object in the
world coordinate system is shown in Fig. 11.

The established multiple linear regression equation in the
Z direction is:

Z i = 0.5701× Z ip + 0.4388× Z is, (30)

To verify the accuracy and rationality of the equation,
the regression equation needs to be tested as follows:

(1) F Inspection: At a significance level α, calculate the
F value. If F > Fα (k,N − k−1), then all the independent
variables significantly impact the dependent variable as a
whole, and the assumption of the linear relationship of the
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FIGURE 11. Joint dense 3D reconstruction surface.

regression equation is significant. Otherwise, the regression
effect is considered to be insignificant, and the independent
variable needs to be determined again. Here, N is the number
of samples, and k is the number of independent variables.

(2) t-Test: At the significance level α, the t value is cal-
culated. If |t| > tα/2 (N − k−1), It is considered that each
independent variable has a significant impact on the depen-
dent variable. Otherwise, it is considered insignificant, and
the variable is excluded from the equation.

(3)Goodness of Fit Test: Calculate the coefficient of deter-
mination R2 to evaluate the goodness of fit of the regression
equation to the sample observations, R2 = RSS/TSS, where
TSS is the total sum of squares, and RSS is the regression sum
of squares.

The numerical table of the analysis of variance of the
regression model in this experiment is shown in Table 2:

TABLE 2. Numerical table of analysis of variance.

At a significance level α, P < 0.05 is considered as ideal.
The significance level is 0.05 in this paper, and the P value of
the model is 0.

After calculation, the F = 690.4029, t1 = 7.6332, t2 =
4.2352, they are all greater than the critical value: F > F0.05
(2, 1460)= 3, t1> t2> t0.05/2 (2, 1460)= 2.920, the coeffi-
cient of determination R2 is 0.4861. The residual scatter plot
is evenly distributed around 0, and the residual histogram is
normally distributed, so the regression model is reasonable
overall. Part of the residual plot and the histogram of residual
distribution are shown in Figure 12:

C. ANALYSIS OF 3D RECONSTRUCTION RESULTS
The accuracy and validity of the joint dense 3D reconstruction
results were verified through qualitative analysis and quanti-
tative analysis.

FIGURE 12. (a) Residual plot. (b) Histogram of residual distribution.

1) QUALITATIVE ANALYSIS
The 3D reconstruction surface in the world coordinate system
was used to compare the combined dense 3D reconstruction
method qualitatively in this paper. The local 3D surface shape
was compared with the overall height in the Z direction,
as shown in Fig. 13. Where H1 and H2 are the heights of
the cup body and the handle in the Z direction of the shading
3D reconstruction, respectively, andH3 andH4 are the heights
of the cup body and the handle in the Z direction of the joint
dense 3D reconstruction, respectively.

Although both polarization-based reconstruction and
shading-based reconstruction can restore the shape of the
teacup surface, the polarization-based 3D reconstruction
method is sensitive to noise at positions with a low polar-
ization degree [4], [8] and a mutual reflection on the
reconstructed surface [4], which results in some parts of
the polarization reconstruction being distorted, as seen
in Fig. 12(a). The shading-based 3D reconstruction method
needs to make assumptions about the lighting condi-
tions [12], [13] and surface albedo [14]–[16]. Because of
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FIGURE 13. (a) Polarization reconstruction surface. (b) Shading
reconstruction surface. (c) Joint dense 3D reconstruction surface.

the diversity of the actual reflections and the difficulty of
guaranteeing parallel light source conditions during endo-
scopic measurement [29], [30], a proportion of the shad-
ing reconstruction results are distorted in the Z direction,
i.e., the height difference between H1 and H2 is small.
In areas where the brightness is high and specular reflection
and diffuse reflection coexist, the reconstructed size in the
Z direction would be enlarged, as shown in Fig. 12(b).
By combining stereo vision with polarization and shading
reconstruction and constructing a minimum error model,
the obtained 3D reconstruction surface is closer to the actual
result, as shown in Fig. 12(c). It can be seen from the fig-
ure that the joint dense 3D reconstruction method has less
distortion than the polarization reconstruction method, and
the overall Z -direction ratio is more accurate than that deter-
mined via shading reconstruction.

2) QUANTITATIVE ANALYSIS
A cross-sectional view was used for comparison to quantita-
tively compare the joint dense 3D reconstruction surface and
the actual surface, as shown in Fig. 14.

Since each horizontal section of the teacup is a standard
circle except for the handle and pattern, find the position
where the teacup pattern is obvious, and the horizontal circle
pattern is as few as possible so that it is easy to take points
and measure as shown in Fig. 14. Measure the center position
and diameter of the teacup and make a standard circle as
the true value. We take X at positions −60, −50, −40, −30,
−20, and−10. The calculated average deviation between the

FIGURE 14. (a) Schematic diagram of cross-sectional position.
(b) Comparison of cross-sections.

FIGURE 15. (a) Image of three edges to be measured. (b) 3D curve fitting
image of one edge.

joint dense 3D reconstruction surface and the real surface
is ∼0.38 mm, better than the reconstruction results for polar-
ization and shading. It proves that the 3D shape is well
restored by the joint 3D reconstruction method.
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TABLE 3. Curve length analysis table of teacup.

FIGURE 16. (a) Objects of various materials and shapes. (b) Reconstructed
surface using the joint dense 3D reconstruction method.

The Canny edge detection method [27] with a low error
rate, high localization, and minimum response characteristics
was used to obtain the curve to be measured. The method
was used to extract 3 edges at different positions and for
different lengths of the teacup; then, the 3D polynomial fitting
method was used to fit the curve and calculate the length.
Figure 15 shows the image of the three edges of the teacup
to be measured and a 3D curve fitting image of one edge.

We compare the curve length values obtained via the
single-use polarization reconstruction method, the single-use
shading reconstruction method in the world coordinate sys-
tem after coordinate conversion, and the joint dense 3D recon-
struction method with the actual lengths. The results of the
curve length measurements are shown in Table 3.

It can be seen from Table 3 that the curve length obtained
via the joint dense 3D reconstruction method is closer to

FIGURE 17. The intensity image of the scene.

FIGURE 18. (a) The 3D reconstructed surface of the scene. (b) Part of the
reconstructed surface extracted from the scene.

the actual value. The error was the smallest compared with
the polarization and shading reconstruction methods, and the
mean error was <1%.
Figure 16 shows the joint dense 3D reconstruction method

applied to objects of various materials and shapes, and the
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results show that the surface shape could be well restored in
the world coordinate system.

To verify the joint dense 3D reconstruction method’s effec-
tiveness in complex environments, we carry out outdoor
experiments with the sun as the light source, and the intensity
image is shown in Fig. 17.

The reconstructed surface obtained by the joint dense
3D reconstruction method is shown in Fig. 18.

Fig. 17(a) is the 3D reconstruction surface of the scene.
There are different substances in the scene, and the height
of 3D reconstruction surface is different. In 17(a), four loca-
tions are marked as 1234, and their heights are about 750mm,
300mm, 500mm and 400mm. The material properties can be
distinguished by using the characteristics of different recon-
struction heights of different materials. The key research
objects can also be distinguished and analyzed separately,
as shown in Figure 17(b).

V. CONCLUSION
This paper proposed a joint dense 3D reconstruction method
for endoscopic images of weak texture scenes. The method
could handle weak texture targets well and obtain the
3D surface shape of the target in the world coordinate system.
It addressed the inability to get real-world coordinates when
using only polarization or shading 3D reconstructionmethods
and the issue of a sparse point cloud in the weak texture
part when using the stereo vision method. The target surface
obtained via the joint dense 3D reconstruction method in this
paper was close to the actual object shape, and the mean
error of the 3D length measurement of the curves was ≤1%.
The joint dense 3D reconstruction method can be applied
to complex scenes with different materials and different
shapes.

Our method used multiple linear regression methods to
combine three different 3D reconstruction results, and while
the restored 3D reconstruction surface was closer to the actual
situation. Still, it did not eliminate the influence of distortion
because we’re combining them all in proportion. In the future,
we plan to divide the object into several parts with differ-
ent characteristics and then combine polarization, shading,
and stereo vision in those parts to realize a more accurate
3D reconstructed surface.
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