CIOMP OpenIR
Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks
D.Q.Li; S.Y.Xu; D.Wang; D.J.Yan
2019
发表期刊Optics Letters
ISSN0146-9592
卷号44期号:5页码:1170-1173
摘要In the cophasing of the segmented opticalmirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range piston errors beyond the cophasing detection range of phase diversity algorithm. It is necessary to introduce specific sensors (e.g., microlenses or prisms), but they greatly increase the complexity and manufacturing cost of the optical system. In this Letter, we introduce the convolutional neural network (CNN) to distinguish the piston error range of each submirror. To get rid of the dependence of the CNN dataset on the imaging target, we construct the feature vector by the in-focal and defocused images. The method surpasses the fundamental limit of the detection range by using different wavelengths. Finally, the results of the simulation experiment indicate that the method is effective. (c) 2019 Optical Society of America
关键词Optics
DOI10.1364/ol.44.001170
URL查看原文
收录类别SCI ; EI
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/63273
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
D.Q.Li,S.Y.Xu,D.Wang,et al. Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks[J]. Optics Letters,2019,44(5):1170-1173.
APA D.Q.Li,S.Y.Xu,D.Wang,&D.J.Yan.(2019).Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks.Optics Letters,44(5),1170-1173.
MLA D.Q.Li,et al."Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks".Optics Letters 44.5(2019):1170-1173.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Large scale piston e(1982KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[D.Q.Li]的文章
[S.Y.Xu]的文章
[D.Wang]的文章
百度学术
百度学术中相似的文章
[D.Q.Li]的文章
[S.Y.Xu]的文章
[D.Wang]的文章
必应学术
必应学术中相似的文章
[D.Q.Li]的文章
[S.Y.Xu]的文章
[D.Wang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Large scale piston error detection technology.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。