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In the cophasing of the segmented optical mirrors, the Shack–
Hartmann wavefront sensor is not sensitive to the submirror
piston error and the large range piston errors beyond the
cophasing detection range of phase diversity algorithm. It
is necessary to introduce specific sensors (e.g., microlenses
or prisms), but they greatly increase the complexity and
manufacturing cost of the optical system. In this Letter,
we introduce the convolutional neural network (CNN) to dis-
tinguish the piston error range of each submirror. To get rid
of the dependence of the CNN dataset on the imaging target,
we construct the feature vector by the in-focal and defocused
images. The method surpasses the fundamental limit of the
detection range by using different wavelengths. Finally, the
results of the simulation experiment indicate that the method
is effective. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.001170

In order to pursue higher observation and resolution capabilities,
telescopes have been developing in the direction of long focal
length and large diameter in recent years [1]. The emergence
of segmented telescopes greatly reduces the processing cost
and the manufacturing cycle of the primary mirror. However,
large-diameter telescopes composed of submirrors also face a
series of technical challenges, the most difficult being the correc-
tion of the phase error between the submirrors which includes
misalignments resulting from relative piston aberrations between
segments and tip-tilt aberrations of each submirror [2].

Some methods proposed for cophasing segmented mirrors
use a phase diversity (PD) algorithm [3], but the measurement
range is limited. In Ref. [2], curvature sensors were first used for
the piston detection. However, they lack ample capture range.
Some methods use microlenses [4] that must be aligned with
high accuracy over each of the edges of the segments. We pro-
pose the PD algorithm to work jointly with the piston detector
that is described in this Letter.

The method presented here makes use of the in-focal and
defocused images at visible wavelengths, which is the same as

the PD algorithm, so no additional hardware is required. To get
rid of the dependence of the training dataset on the imaging
target, we construct the feature vector which is independent
of the imaging content. An interferometric method cannot dis-
tinguish the differences in the number of waves away from the
optical path lengths by monochromatic light. Through the use
of combined wavelength and machine learning, the method de-
scribed in this Letter can resolve this ambiguity.

The convolutional neural network (CNN) [5] is a deep
learning model of multi-layer neuron connections. The model
is constructed by the human visual system processing mecha-
nism. The neurons shared by weights are convoluted on the
input image to obtain features. The network can directly input
the original image, avoiding complicated pre-processing of the
image; thus, it is widely used. CNNs have been used in the past
for cophasing optical segmented mirrors [6], but we build a
new training method that does not depend on the imaging tar-
get of the optical system and can surpass the fundamental limit
of 2π.

This Letter is organized as follows: the mathematical model
of the problem is given. After that, the structure and training
process of the CNN used in the Letter are explained. Then the
construction of the training dataset and the simulation experi-
ment are described. Finally, we present the conclusion and the
future work.

The segmented type primary mirror system arranges a plu-
rality of small-caliber optical components according to a certain
spatial position, and adjusts each submirror to meet the con-
focal and cophasing requirement to achieve a single primary
mirror of equivalent aperture optical performance.

This Letter refers to the primary mirror structure of the
Keck telescope [7] and uses six hexagonal submirrors to form
the primary mirror. The optical structure is shown in Fig. 1.
The six submirrors are ring-shaped, and the middle is a
light-passing hole. For convenience of description, each sub-
mirror is numbered one by one, and a coordinate system is
established [8].

As shown in Fig. 1, the generalized pupil function of the
segmented primary mirror can be written as

1170 Vol. 44, No. 5 / 1 March 2019 / Optics Letters Letter

0146-9592/19/051170-04 Journal © 2019 Optical Society of America

mailto:lidequan@ciomp.ac.cn
mailto:lidequan@ciomp.ac.cn
mailto:lidequan@ciomp.ac.cn
https://doi.org/10.1364/OL.44.001170
https://crossmark.crossref.org/dialog/?doi=10.1364/OL.44.001170&amp;domain=pdf&amp;date_stamp=2019-02-20


P�x, y� �
XN
j�1

Pj�x, y� exp�iϕj�x, y��: (1)

pj is the shape function of the jth submirror and can be given by

Pj �
�
1 inside the jth hexagon
0 outside the jth hexagon : (2)

ϕj is the aberration corresponding to the jth submirror and can
be expressed as a linear combination of Zernike polynomials.
Only when considering the piston and tip-tilt aberration of
each submirror, ϕj can be written as

ϕj �
2π

λ
�αj1Z j1 � αj2Z j2 � αj3Z j3�: (3)

In the above equation, Z j1 is the piston error of the jth sub-
mirror along the optical axis, Z j2 and Z j3 are the tip-tilt error of
the jth mirror in the X -axis and the Y -axis, and ajn are the
corresponding aberration coefficients. The generalized pupil
function of the segmented primary mirror can be written as

P�x, y� �
XN
j�1

Pj�x, y� exp
�
i
2π

λ
�αj1Z j1 � αj2Z j2 � αj3Z j3�

�
:

(4)

The relations of the focus image collected in the focus surface
and the object in the spatial domain in this optical system are

i�x, y� � o�x, y� � PSF�x, y�: (5)

The relationship in the frequency domain is

I�u, v� � O�u, v� ·OTF�u, v�: (6)

In addition, PSF�u, v� can be obtained by the inverse Fourier
transform of a generalized pupil function:

PSF�u, v� � jFT−�P�x, y��j2: (7)

In the above equation, the variables x, y are all variables in the
spatial domain. o�x, y� is the distribution functions of the two-
dimensional object. i�x, y� is the intensity distribution of the
image on the ideal focal plane. PSF�x, y� is the optical system
point spread function corresponding to the intensity distribu-
tion of an ideal focal plane image. P�x, y� is a generalized pupil
function for an optical system. FT−� � is a two-dimensional in-
verse Fourier transform operation.

Similarly, the relations of the defocus image collected in the
defocus surface and the object in the spatial domain in this op-
tical system are

id �x, y� � o�x, y� � PSFd �x, y�: (8)

The relationship in the frequency domain is

Id �u, v� � O�u, v� ·OTFd �u, v�: (9)

PSFd �u, v� � jFT−�Pd �x, y��j2: (10)

Pd �x, y� � A�x, y� exp i�ϕ�x, y� � ϕd �x, y��: (11)

In the above equation, ϕd �x, y� is the known defocus amount
introduced which can be represented by the fourth term rep-
resenting the defocus amount in the Zernike polynomial:

ϕd �x, y� � a4c4�ρ, θ�: (12)

The network topology that was used is described. There are two
convolutional layers (one pooling layer after each convolutional
layer), two fully connected layers, and the last softmax output
classification result. The structure of the used CNN is shown
in Fig. 2.

The segmented mirror has a total of six submirrors, and the
piston error range of each submirror is �0, 10λ�. If all the piston
errors of the six submirrors are in the range of �0, 1λ�, and it is
considered that the segmented mirror is in the cophasing range
of PD, the work of the presented piston detector ends.

We use the first submirror as a benchmark; if the CNN is
directly used to identify the piston error range of the five sub-
mirrors at the same time, the recognition step is λ. Then the
identification type has 100,000 species, obviously this is impos-
sible to achieve. Therefore, in this Letter, we train five CNNs
with the same structure at the same time for identifying every
submirror piston error, except the error of the first submirror;
the identification type of every CNN has 10 species.

In this way, we can identify and correct the piston error of
the submirrors to the cophasing range of PD. We repeat the
above process until the piston errors of all the submirrors
are corrected to �0, 1λ�; the specific operation flow of the algo-
rithm is shown in Fig. 3.

If the in-focus image or the defocus image of the segmented
mirror optical system with submirrors in different piston error
ranges is directly used to construct the training dataset, the
training dataset will be heavily dependent on the imaging target
of the optical system, and different imaging targets will consti-
tute different datasets however, in the actual situation, it is dif-
ficult to ensure that the imaging target is consistent with the
imaging target that generates the training dataset. Therefore,
the well-trained CNN will lose its meaning, so it is necessary
to construct a simple training dataset which is not related to the
imaging content.

Here we use the in-focus image and the defocus image of
the segmented mirror optical system to form the CNN training
set [9,10]:

Fig. 1. Construction of the primary mirror and dimensions of the
segmented sub-aperture.

Fig. 2. Structure of the used CNN.
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M sharpness �
I · I�d − I

� · I d
I · I� � Id · I�d

� 2iGG
G2 � G2

d
sin�θ − θd �: (13)

In the above equation, G is the amplitude of the in-focus image
spectrum, Gd is the amplitude of the defocus image spectrum,
θ is the argument angle of the in-focus image spectrum, θd is
the argument angle of the defocus image spectrum, and
M sharpness is the sharpness metric feature quantity represented
by the in-focus image and the defocus image. It can be seen that
this feature vector is independent of the imaging content.
Table 1 is the in-focus image and the defocus image formed
by the segmented mirror optical system for different targets
and the corresponding sharpness metric feature quantity.

To surpass the fundamental limit of 2π in the detection
range, a sequence of acquisitions with different wavelengths
should be taken. In our example, we use λ1 � 700 nm as
the largest wavelength, and three additional shorter wave-
lengths λ2 � 0.93λ1, λ3 � 0.86λ1, and λ4 � 0.79λ1 to form
a three-channel pseudo color image; three channels are used
for three-channel training of the CNN.

The relevant parameters of the segmented active optics sim-
ulation system are as follows: the primary mirror consists of six
hexagon submirrors; the effective apertures of the primary mir-
ror D and submirror d are 4 and 1.46 m, respectively; the focal
length is 40 m; the defocused length is set to 400 λ1.

In order to better simulate the state of the segmented mirror
in the cophasing, when the training dataset is generating, the tip-
tilt aberrations of the six submirrors in the X -axis and Y -axis
directions are seted in the range �−0.5λ, 0.5λ�, which are randomly
generated by the MATLAB. There are 4000 training samples for
every submirror; the range distribution is shown in Table 2.

After analysis and comparison in the simulation experiment,
we find that the piston errors of each submirror interfered with
each other seriously, which causes the CNN training to fail easily.
Thus, we use statistical methods to find the data points in the
M sharpness which are only sensitive to every submirror piston
error. Below we present the data points for every submirror used
in the M sharpness training dataset; see Table 3 for details.

We use TensorFlow to build the framework of the CNN;
the network parameters are updated with a mini-batch gradient
descent algorithm and the Adam update rule [11]. The size of
the batch is 64, the number of the learning rate is 0.0001, and
the maximum number of iterations is 10,000. In the training
process of the CNN, we record the accuracy of the classification
task every 50 iterations.

In Fig. 4, the accuracy of the every submirror piston error
range classification task over training is plotted. As can be seen
from Fig. 4, the final accuracy of the all submirror piston error
range classification task over training attained is around 100%.

For each CNN, we build a test dataset of 160 samples that
the network was not trained on. Every 16 test samples are ran-
domly distributed in each piston error range. The recognition
accuracy of each trained CNN over the test dataset is 97.5%,
98.1%, 98.7%, 98.1%, and 96.8%. The time of the trained
CNN recognizes that a sample is about 0.91 s. The CPU
we used is Intel(R) Core(Tm) i5-4460 K, and the frequency
is 3.20 GHz; the graphics processing unit (GPU) we used is
NVDIA GeForce GT 730. The software version of Python

Fig. 3. Recognition flow of the submirror piston error.

Table 1. In-Focus Image and the Defocus Image Formed
by the Segmented Mirror Optical System for Different
Targets and the Corresponding SharpnessMetric Feature
Quantity

Imaging 1 Imaging 2

Imaging Target

In-Focus Image

Defocus Image

Sharpness Metric

Table 2. Range Distribution of the Msharpness Training
Dataset

Piston Error Range

The Number of Submirrors

2 3 4 5 6

�0, λ� 400 400 400 400 400
�λ, 2λ� 400 400 400 400 400
�2λ, 3λ� 400 400 400 400 400
�3λ, 4λ� 400 400 400 400 400
�4λ, 5λ� 400 400 400 400 400
�5λ, 6λ� 400 400 400 400 400
�6λ, 7λ� 400 400 400 400 400
�7λ, 8λ� 400 400 400 400 400
�8λ, 9λ� 400 400 400 400 400
�9λ, 10λ� 400 400 400 400 400
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is 3.5.2, and the software version of Tensorflow is tensor-
flow_gpu-0.12.

It has been proven in this Letter that the method trained
with simulated data is efficient. The piston error range of every
submirror can be distinguished accurately, so we can calculate
the remaining tip-tilt and piston value of segmented mirrors
using the PD algorithm. The method is fast after the network
is trained, and it requires no additional equipment by using the
imaging camera of PD. It does not depend on the imaging tar-
get of the optical system and can surpass the fundamental limit
of 2π in the detection range of the submirror piston error with
the tip-tilt errors to 10λ0 by using combined wavelengths.
However, there are some classification errors, and the method
should be tested to be robust to the image noise; we will explore
these problems further in future work.

Funding. National Natural Science Foundation of China
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Table 3. Typical Training Samples and the Training Data Points Used of Every Submirror

M sharpness

Data Points Used
of the Submirror 2

Data Points Used
of the Submirror 3

Data Points Used
of the Submirror 4

Data Points Used
of the Submirror 5

Data Points Used
of the Submirror 6

Piston Error Range
of the Submirror

�λ, 2λ� �7λ, 8λ� �6λ, 7λ� �4λ, 5λ� �λ, 2λ�

The Number of Submirrors 2 3 4 5 6

Fig. 4. Accuracy of the every submirror piston error range classification task over training. In (a), the number of the submirror is 2. In (b), the
number is 3. In (c), the number is 4. In (d), the number is 5. In (e), the number is 6.
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