CIOMP OpenIR  > 中科院长春光机所知识产出
Robust Background Subtraction via the Local Similarity Statistical Descriptor
Zeng, D. D.; M. Zhu; T. X. Zhou; F. Xu and H. Yang
2017
发表期刊Applied Sciences-Basel
卷号7期号:10
摘要Background subtraction based on change detection is the first step in many computer vision systems. Many background subtraction methods have been proposed to detect foreground objects through background modeling. However, most of these methods are pixel-based, which only use pixel-by-pixel comparisons, and a few others are spatial-based, which take the neighborhood of each analyzed pixel into consideration. In this paper, inspired by a illumination-invariant feature based on locality-sensitive histograms proposed for object tracking, we first develop a novel texture descriptor named the Local Similarity Statistical Descriptor (LSSD), which calculates the similarity between the current pixel and its neighbors. The LSSD descriptor shows good performance in illumination variation and dynamic background scenes. Then, we model each background pixel representation with a combination of color features and LSSD features. These features are then embedded in a low-cost and highly efficient background modeling framework. The color and texture features have their own merits and demerits; they can compensate each other, resulting in better performance. Both quantitative and qualitative evaluations carried out on the change detection dataset are provided to demonstrate the effectiveness of our method.
收录类别sci ; ei
语种英语
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/59410
专题中科院长春光机所知识产出
推荐引用方式
GB/T 7714
Zeng, D. D.,M. Zhu,T. X. Zhou,et al. Robust Background Subtraction via the Local Similarity Statistical Descriptor[J]. Applied Sciences-Basel,2017,7(10).
APA Zeng, D. D.,M. Zhu,T. X. Zhou,&F. Xu and H. Yang.(2017).Robust Background Subtraction via the Local Similarity Statistical Descriptor.Applied Sciences-Basel,7(10).
MLA Zeng, D. D.,et al."Robust Background Subtraction via the Local Similarity Statistical Descriptor".Applied Sciences-Basel 7.10(2017).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Robust Background.pd(6633KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zeng, D. D.]的文章
[M. Zhu]的文章
[T. X. Zhou]的文章
百度学术
百度学术中相似的文章
[Zeng, D. D.]的文章
[M. Zhu]的文章
[T. X. Zhou]的文章
必应学术
必应学术中相似的文章
[Zeng, D. D.]的文章
[M. Zhu]的文章
[T. X. Zhou]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Robust Background.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。