CIOMP OpenIR  > 中科院长春光机所知识产出
Target tracking based on enhanced Flock of Tracker and deep learning
Cheng, S.; Y.-G. Cao; J.-X. Sun; L.-R. Zhao; G.-W. Liu and G.-L. Han
2015
发表期刊Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology
卷号37期号:7页码:1646-1653
摘要To solve the problem that the tracking algorithm often leads to drift and failure based on the appearance model and traditional machine learning, a tracking algorithm is proposed based on the enhanced Flock of Tracker (FoT) and deep learning under the Tracking-Learning-Detection (TLD) framework. The target is predicted and tracked by the FoT, the cascaded predictor is added to improve the precision of the local tracker based on the spatio-temporal context, and the global motion model is evaluated by the speed-up random sample consensus algorithm to improve the accuracy. A deep detector is composed of the stacked denoising autoencoder and Support Vector Machine (SVM), combines with a multi-scale scanning window with global search strategy to detect the possible targets. Each sample is weighted by the weighted P-N learning to improve the precision of the deep detector. Compared with the state-of-the-art trackers, according to the results of experiments on variant challenging image sequences in the complex environment, the proposed algorithm has more accuracy and better robust, especially for the occlusions, the background clutter and so on. , 2015, Science Press. All right reserved.
文章类型期刊论文
收录类别EI
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/55969
专题中科院长春光机所知识产出
推荐引用方式
GB/T 7714
Cheng, S.,Y.-G. Cao,J.-X. Sun,et al. Target tracking based on enhanced Flock of Tracker and deep learning[J]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology,2015,37(7):1646-1653.
APA Cheng, S.,Y.-G. Cao,J.-X. Sun,L.-R. Zhao,&G.-W. Liu and G.-L. Han.(2015).Target tracking based on enhanced Flock of Tracker and deep learning.Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology,37(7),1646-1653.
MLA Cheng, S.,et al."Target tracking based on enhanced Flock of Tracker and deep learning".Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology 37.7(2015):1646-1653.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于增强群跟踪器和深度学习的目标跟踪.p(2285KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cheng, S.]的文章
[Y.-G. Cao]的文章
[J.-X. Sun]的文章
百度学术
百度学术中相似的文章
[Cheng, S.]的文章
[Y.-G. Cao]的文章
[J.-X. Sun]的文章
必应学术
必应学术中相似的文章
[Cheng, S.]的文章
[Y.-G. Cao]的文章
[J.-X. Sun]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 基于增强群跟踪器和深度学习的目标跟踪.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。