CIOMP OpenIR  > 中科院长春光机所知识产出
无人机飞行控制系统若干关键技术研究
段镇
学位类型博士
导师陈娟,贾宏光
2014-07
学位授予单位中国科学院大学
学位专业机械电子工程
摘要无人机在整个航空领域扮演着越来越重要的角色,飞控系统是无人机系统的核心组成部分,其性能直接影响着无人机的飞行品质和飞行性能,直接关系到无人机的飞行安全。本文在总结相关领域研究成果与发展现状基础上,针对某固定翼无人机,从空中飞行与地面滑跑动力学建模、模型简化、控制律设计及实现、干扰观测器设计、控制律评估与确认、半物理仿真与飞行试验等方面展开了相应研究。 首先,在考虑发动机扭矩、推力偏心及初始停机角影响的情况下,建立了无人机空中飞行和地面滑跑的六自由度非线性方程,将无人机沿跑道中心线做定常无侧滑直线运动作为地面滑跑基准运动,实际运动是在基准运动基础上的小扰动运动,利用小扰动原理显式地给出了无人机空中飞行、地面三轮及两轮滑跑的线性化状态空间表达式,为控制系统设计与进一步的评估验证打下基础。 研究了鲁棒伺服LQR控制方法,采用鲁棒伺服LQR控制及经典控制相结合的方法设计了无人机空中飞行纵向运动及横侧向运动的控制律,通过仿真证明上述方法比常规PID控制器响应更加平缓,俯仰角响应超调量减小50%,滚转角响应超调量减小70%,且很好地抑制了响应初期舵指令突变而导致无人机瞬间产生较大滚转角速率的现象,大大降低了对机体可用过载的要求;对航迹跟踪回路提出采用偏航角速率、偏航角、侧偏速度及偏航距并在侧偏速度回路串入滤波器的反馈控制方式,仿真证明该方法能使无人机很好地跟踪预设航迹。 为消除无人机飞行过程中铰链力矩对控制精度的影响,将干扰观测器应用于飞行控制律的设计中,证明了干扰观测器与控制器设计的独立性,分析了干扰观测器的鲁棒稳定性;以盘旋飞行模态为例设计了基于干扰观测器的飞行控制律,通过仿真验证了带干扰观测器的控制律可消除不带干扰观测器时产生的3.2°滚转角稳态误差,滚转角控制精度得到大幅提高;采用分块离散方法和单模态瞬变抑制法分别解决了控制律工程实现中的非线性控制律离散化及控制律切换时舵面跳变的问题。 针对自主滑跑模型的零极点分布范围较大且滑跑模型中实际参数不易准确获取的情况,对三轮滑跑的纵向控制采用升降舵保证前后轮压力比为定值的控制方式,对横侧向控制的偏航角速率、偏航角和侧偏距回路分别设计了基于参考模型的自适应控制律、定参数控制律及增益调节控制律;对两轮滑跑阶段横侧向控制的偏航角及侧偏距回路分别设计了基于PD增益自适应调节控制律和定参数控制律;通过仿真验证了当无人机存在2.5°初始偏航角和0.2m初始侧偏距的情况下,设计的控制律能迅速消除偏差,使无人机沿跑道中心线滑跑。 为减少试飞次数,提高飞行试验成功率,选取不稳定特征值判断准则采用基于多项式的方法对无人机空中飞行存在惯性、气动等不确定因素时的控制律进行了评估和确认,通过评估得到标称状态下无人机在整个飞行包线内的可用迎角为[-2°,18°],单个不确定参数摄动时的可用迎角范围为[0°,15°],多个不确定参数同时摄动时可用迎角范围减小为[0°,11°]。 最后,通过半物理仿真试验、滑跑试验与飞行试验对上述研究工作的实际应用效果进行了验证,半物理仿真试验与数字仿真吻合较好;无人机外场飞行试验俯仰角控制的实际稳态误差为0.2°,滚转角控制的实际稳态误差为0.4°,高度控制的实际稳态误差为2m,均优于国军标对飞行控制系统的指标要求;对自主起飞自适应控制律完成了外场自主滑跑试验,结果表明,整个滑跑过程中的最大偏航角为2°,最大侧偏距为1.5m,且对侧风干扰有较强的抑制作用。
其他摘要UAV plays an increasingly important role throughout the whole aviation sector, flight control system is one of the core components of the UAV, its performance directly affects the flying qualities, flight performances and flight safety . On the basis of summarizing the research results and development status of related fields, this thesis has a central research on a fixed-wing UAV, including dynamics modeling of flying and taxiing, model simplifying, Control law design and implementation, Disturbance observer design, clearance of control law, semi-physical simulation and flight test. First, Considering the engine torque, thrust eccentric and ground angle, the six degrees of freedom nonlinear equations of flying and taxiing is Established.Taking the UAV moving along the centerline of the runway constantly without sliding as the reference movement, the actual movement is small perturbation motion based on the reference movement , the linear state space expression of flying, taxiing with three wheels and  two wheels is derived using small perturbation principle, it lays a foundation for the control system design and clearance. The robust servo LQR control method is studied, the longitudinal and lateral control law of flying is designed using the method of combining the robust servo LQR and the classical control; the simulation results proves that the response of the method is more gentle than conventional PID controller, the overshoot of pitch angle response decreases by 50%, the overshoot of roll angle response decreases by 50%, the phenomenon of a larger roll angle rate instantly because of servo command mutation is well suppressed in initial response, the body's requirements of UAV available overload is greatly reduced; the control structure of flight path tracking loop uses the feedback of yaw rate, yaw angle, yaw speed and yaw distance, and a filter is cascaded through the yaw speed loop, the simulation results show that this control method can track the default flight path. Disturbance observer is applied to the flight control law design to eliminate the effects of hinge moment to control accuracy during flying, the independence of disturbance observer design and controller design is proved, the robust stability of disturbance observer is analyzed; taking the circle flight mode for example, the flight control law is designed based on disturbance observer, the simulation results show that the control law with a disturbance observer can eliminate the 3.2 °roll angle steady-state error generated by the control law without disturbance observer, the control accuracy of the roll angle is greatly improved; the nonlinear control law discrete issues in project implementation is solved using the block discrete method and the servos transition issues when the control law switching is solved using single-mode transient suppression method. For the situation of larger pole-zero distribution range of the taxiing model and the actual parameters are not easy to accurately obtained, longitudinal control of three wheels taxiing is to ensure the front and rear wheels pressure ratio is constant throughout the deflection of elevator, the model reference adaptive control law, given parameter control law and gain scheduling control law are designed respectively for the yaw rate, yaw angle and yaw distance loop of lateral control; the PD gain adaptive control law and given parameter control law are designed respectively for the yaw angle and yaw distance loop of  two wheels taxiing lateral control; the simulation results show that the control law can eliminate the deviation quickly when there exists initial yaw angle 2.5 °and  initial yaw distance 0.2m,  made the UAV taxiing along centerline of the runway. To reducing flight times, increasing the success rate of flight test, the  control law was cleared and verified based on unstable eigenvalues criterion using polynomial approach when there existing the inertia, pneumatic and other uncertainties in flying, the clearance results show that the available angle of attack throughout the whole flight envelope in nominal state is [-2°,18°], the available angle of attack range with single uncertain parameter perturbation is [0°,15°],the available angle of attack range with multiple uncertain parameters simultaneously perturbation is reduced to [0°,11°]. Finally, the research works above are verified through semi-physical simulation taxiing test and flight test , the semi-physical simulation results agree well with the numerical simulation;the actual pitch angle control steady-state error is 0.2° in outfield flight test, the actual roll angle control steady-state error is 0.4°, the actual height control steady-state error is 2m , all the above are better than the military standard requirements; the outfield autonomous taxiing test is completed to verify the adaptive control law, the results show that the maximum yaw angle is 2°, the maximum yaw distance is 1.5m, the crosswind disturbance is well inhibited.
语种中文
文献类型学位论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/41402
专题中科院长春光机所知识产出
推荐引用方式
GB/T 7714
段镇. 无人机飞行控制系统若干关键技术研究[D]. 中国科学院大学,2014.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
段镇.pdf(2997KB) 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[段镇]的文章
百度学术
百度学术中相似的文章
[段镇]的文章
必应学术
必应学术中相似的文章
[段镇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。