CIOMP OpenIR  > 中科院长春光机所知识产出
Visual tracking and learning using speeded up robust features
Li J. Y.; Wang Y. L.; Wang Y. J.
2012
发表期刊Pattern Recognition Letters
ISSN0167-8655
卷号33期号:16页码:2094-2101
摘要A speeded up robust features (SURF) based optical flow algorithm is presented for visual tracking in real scenarios. SURF construct invariant features to correspond the blobs of interest across frames. Meanwhile, new feature-based optical flow algorithm is used to compute the warp matrix of a region centered on SURF key points. Furthermore, on-line visual learning for long-term tracking is performed using incremental object subspace method, which includes the correct update of the sample mean and appearance model. The proposed SURF based tracking and learning method contributes measurably to improving overall tracking performance. Experimental work demonstrates that the proposed strategy improves the performance of the classical optical flow algorithms in complicated real scenarios. (c) 2012 Elsevier B.V. All rights reserved.
收录类别SCI ; EI
语种英语
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/34113
专题中科院长春光机所知识产出
推荐引用方式
GB/T 7714
Li J. Y.,Wang Y. L.,Wang Y. J.. Visual tracking and learning using speeded up robust features[J]. Pattern Recognition Letters,2012,33(16):2094-2101.
APA Li J. Y.,Wang Y. L.,&Wang Y. J..(2012).Visual tracking and learning using speeded up robust features.Pattern Recognition Letters,33(16),2094-2101.
MLA Li J. Y.,et al."Visual tracking and learning using speeded up robust features".Pattern Recognition Letters 33.16(2012):2094-2101.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li J. Y.]的文章
[Wang Y. L.]的文章
[Wang Y. J.]的文章
百度学术
百度学术中相似的文章
[Li J. Y.]的文章
[Wang Y. L.]的文章
[Wang Y. J.]的文章
必应学术
必应学术中相似的文章
[Li J. Y.]的文章
[Wang Y. L.]的文章
[Wang Y. J.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。