Changchun Institute of Optics,Fine Mechanics and Physics,CAS
Achieving ultrasensitive temperature sensing through non-thermally coupled energy levels to overcome energy gap constraints | |
G. T. Xiang, Y. Y. Yi, Z. Y. Yang, Y. J. Wang, L. Yao, S. Jiang, X. J. Zhou, L. Li, X. J. Wang and J. H. Zhang | |
2024 | |
发表期刊 | Inorganic Chemistry Frontiers
![]() |
ISSN | 2052-1553 |
卷号 | 11期号:5页码:1522-1530 |
摘要 | Highly sensitive and precise optical temperature measurements are pivotal across various fields, facilitating enhanced temperature regulation and monitoring. This study achieves an optically ultrahigh sensitivity temperature sensing system in Yb3+/Nd3+/Er3+ tridoped CaSc2O4 by leveraging non-thermal coupling energy levels, specifically Er3+:4F9/2 and Nd3+:4F5/2. This accomplishment circumvents the sensitivity constraint imposed by the energy gap. The maximum absolute and relative sensitivity of the optical thermometer peaks at 13.92% K-1 and 4.61% K-1 respectively, surpassing the values from the majority of analogous optical thermometers. Furthermore, it also exhibits exceptional temperature resolution, maintaining values below 0.03 K throughout the entire testing temperature range. Simultaneously, the temperature sensing properties reliant on the thermally coupled Er3+:2H11/2/4S3/2 states are explored in detail, revealing the maximum absolute and relative sensitivity for temperature measurement of 0.37% K-1 and 1.53% K-1, respectively. In the validation experiment, both of the optical thermometers show accurate temperature measurement capability. Additionally, the penetration depth in the biological tissues is 8 mm for the green and red light of Er3+ and 10 mm for the near-infrared emission of Nd3+. All of these studies collectively demonstrate the potential of CaSc2O4:Yb3+/Nd3+/Er3+ for achieving ultrasensitive temperature sensing and application in the deep biological tissues. Ultrasensitive temperature sensing is realized through non-thermally coupled energy levels to overcome energy gap constraints. |
DOI | 10.1039/d3qi02625f |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/68793 |
专题 | 中国科学院长春光学精密机械与物理研究所 |
推荐引用方式 GB/T 7714 | G. T. Xiang, Y. Y. Yi, Z. Y. Yang, Y. J. Wang, L. Yao, S. Jiang, X. J. Zhou, L. Li, X. J. Wang and J. H. Zhang. Achieving ultrasensitive temperature sensing through non-thermally coupled energy levels to overcome energy gap constraints[J]. Inorganic Chemistry Frontiers,2024,11(5):1522-1530. |
APA | G. T. Xiang, Y. Y. Yi, Z. Y. Yang, Y. J. Wang, L. Yao, S. Jiang, X. J. Zhou, L. Li, X. J. Wang and J. H. Zhang.(2024).Achieving ultrasensitive temperature sensing through non-thermally coupled energy levels to overcome energy gap constraints.Inorganic Chemistry Frontiers,11(5),1522-1530. |
MLA | G. T. Xiang, Y. Y. Yi, Z. Y. Yang, Y. J. Wang, L. Yao, S. Jiang, X. J. Zhou, L. Li, X. J. Wang and J. H. Zhang."Achieving ultrasensitive temperature sensing through non-thermally coupled energy levels to overcome energy gap constraints".Inorganic Chemistry Frontiers 11.5(2024):1522-1530. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Achieving ultrasensi(5478KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论