CIOMP OpenIR
Transformer-based target tracking algorithm for space-based optoelectronic detection
R. Zhu, J. Leng, Q. Fu, X. Wang, H. Cai, G. Wen, T. Zhang, H. Shi, Y. Li and H. Jiang
2023
发表期刊Frontiers in Physics
ISSN2296424X
卷号11
摘要The target tracking by space-based surveillance systems is difficult due to the long distances, weak energies, fast speeds, high false alarm rates, and low algorithmic efficiencies involved in the process. To mitigate the impact of these difficulties, this article proposes a target tracking algorithm based on image processing and Transformer, which employs a two-dimensional Gaussian soft-thresholding method to reduce the image noise, and combines a Laplace operator-weighted fusion method to augment the image, so as to improve the overall quality of the image and increase the accuracy of target tracking. Based on the SiamCAR framework, the Transformer model in the field of natural language processing is introduced, which can be used to enhance the image features extracted from the backbone network by mining the rich temporal information between the initial and dynamic templates. In order to capture the information of the target’s appearance change in the temporal sequence, a template update branch is introduced at the input of the algorithm, which realizes the dynamic update of the templates by constructing a template memory pool, and selecting the best templates for the candidate templates in the memory pool using the cosine similarity-based selection, thus ensuring the robustness of the tracking algorithm. The experimental results that compared with the SiamCAR algorithm and the mainstream algorithms, the TrD-Siam algorithm proposed in this article effectively improves the tracking success rate and accuracy, addressing poor target tracking performance under space-based conditions, and has a good value of application in the field of optoelectronic detection. Copyright © 2023 Zhu, Leng, Fu, Wang, Cai, Wen, Zhang, Shi, Li and Jiang.
DOI10.3389/fphy.2023.1266927
URL查看原文
收录类别sci ; ei
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/68286
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
R. Zhu, J. Leng, Q. Fu, X. Wang, H. Cai, G. Wen, T. Zhang, H. Shi, Y. Li and H. Jiang. Transformer-based target tracking algorithm for space-based optoelectronic detection[J]. Frontiers in Physics,2023,11.
APA R. Zhu, J. Leng, Q. Fu, X. Wang, H. Cai, G. Wen, T. Zhang, H. Shi, Y. Li and H. Jiang.(2023).Transformer-based target tracking algorithm for space-based optoelectronic detection.Frontiers in Physics,11.
MLA R. Zhu, J. Leng, Q. Fu, X. Wang, H. Cai, G. Wen, T. Zhang, H. Shi, Y. Li and H. Jiang."Transformer-based target tracking algorithm for space-based optoelectronic detection".Frontiers in Physics 11(2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Transformer-based ta(2607KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[R. Zhu, J. Leng, Q. Fu, X. Wang, H. Cai, G. Wen, T. Zhang, H. Shi, Y. Li and H. Jiang]的文章
百度学术
百度学术中相似的文章
[R. Zhu, J. Leng, Q. Fu, X. Wang, H. Cai, G. Wen, T. Zhang, H. Shi, Y. Li and H. Jiang]的文章
必应学术
必应学术中相似的文章
[R. Zhu, J. Leng, Q. Fu, X. Wang, H. Cai, G. Wen, T. Zhang, H. Shi, Y. Li and H. Jiang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Transformer-based target tracking algorithm for space-based optoelectronic detection.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。