CIOMP OpenIR
Monocular catadioptric panoramic depth estimation via improved end-to-end neural network model
F. Yan, L. Liu, X. P. Ding, Q. Zhang and Y. Q. Liu
2023
发表期刊Frontiers in Neurorobotics
ISSN1662-5218
卷号17期号:11
摘要In this paper, we propose a monocular catadioptric panoramic depth estimation algorithm based on an improved end-to-end neural network model. First, we use an enhanced concentric circle approximation unfolding algorithm to unfold the panoramic images captured by the catadioptric panoramic camera and then extract the effective regions. In addition, the integration of the Non-local attention mechanism is exploited to improve image understanding. Finally, a depth smoothness loss strategy is implemented to further enhance the reliability and precision of the estimated depths. Experimental results confirm that this refined algorithm is capable of providing highly accurate estimates of object depth.
DOI10.3389/fnbot.2023.1278986
URL查看原文
收录类别sci
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/68072
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
F. Yan, L. Liu, X. P. Ding, Q. Zhang and Y. Q. Liu. Monocular catadioptric panoramic depth estimation via improved end-to-end neural network model[J]. Frontiers in Neurorobotics,2023,17(11).
APA F. Yan, L. Liu, X. P. Ding, Q. Zhang and Y. Q. Liu.(2023).Monocular catadioptric panoramic depth estimation via improved end-to-end neural network model.Frontiers in Neurorobotics,17(11).
MLA F. Yan, L. Liu, X. P. Ding, Q. Zhang and Y. Q. Liu."Monocular catadioptric panoramic depth estimation via improved end-to-end neural network model".Frontiers in Neurorobotics 17.11(2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Monocular catadioptr(2028KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[F. Yan, L. Liu, X. P. Ding, Q. Zhang and Y. Q. Liu]的文章
百度学术
百度学术中相似的文章
[F. Yan, L. Liu, X. P. Ding, Q. Zhang and Y. Q. Liu]的文章
必应学术
必应学术中相似的文章
[F. Yan, L. Liu, X. P. Ding, Q. Zhang and Y. Q. Liu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Monocular catadioptric panoramic depth estimation via improved end-to-end neural network model.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。