CIOMP OpenIR
Image Restoration via Low-Illumination to Normal-Illumination Networks Based on Retinex Theory
C. Wen, T. Nie, M. Li, X. Wang and L. Huang
2023
发表期刊Sensors
ISSN14248220
卷号23期号:20
摘要Under low-illumination conditions, the quality of the images collected by the sensor is significantly impacted, and the images have visual problems such as noise, artifacts, and brightness reduction. Therefore, this paper proposes an effective network based on Retinex for low-illumination image enhancement. Inspired by Retinex theory, images are decomposed into two parts in the decomposition network, and sent to the sub-network for processing. The reconstruction network constructs global and local residual convolution blocks to denoize the reflection component. The enhancement network uses frequency information, combined with attention mechanism and residual density network to enhance contrast and improve the details of the illumination component. A large number of experiments on public datasets show that our method is superior to existing methods in both quantitative and visual aspects. © 2023 by the authors.
DOI10.3390/s23208442
URL查看原文
收录类别sci ; ei
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/68014
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
C. Wen, T. Nie, M. Li, X. Wang and L. Huang. Image Restoration via Low-Illumination to Normal-Illumination Networks Based on Retinex Theory[J]. Sensors,2023,23(20).
APA C. Wen, T. Nie, M. Li, X. Wang and L. Huang.(2023).Image Restoration via Low-Illumination to Normal-Illumination Networks Based on Retinex Theory.Sensors,23(20).
MLA C. Wen, T. Nie, M. Li, X. Wang and L. Huang."Image Restoration via Low-Illumination to Normal-Illumination Networks Based on Retinex Theory".Sensors 23.20(2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Image Restoration vi(2770KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[C. Wen, T. Nie, M. Li, X. Wang and L. Huang]的文章
百度学术
百度学术中相似的文章
[C. Wen, T. Nie, M. Li, X. Wang and L. Huang]的文章
必应学术
必应学术中相似的文章
[C. Wen, T. Nie, M. Li, X. Wang and L. Huang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Image Restoration via Low-Illumination to Norm.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。