CIOMP OpenIR
Marine ship instance segmentation by deep neural networks using a global and local attention (GALA) mechanism
Z. Q. Sun, C. N. Meng, T. Huang, Z. Q. Zhang and S. J. Chang
2023
发表期刊Plos One
ISSN1932-6203
卷号18期号:2页码:22
摘要Marine ships are the transport vehicle in the ocean and instance segmentation of marine ships is an accurate and efficient analysis approach to achieve a quantitative understanding of marine ships, for example, their relative locations to other ships or obstacles. This relative spatial information is crucial for developing unmanned ships to avoid crashing. Visible light imaging, e.g. using our smartphones, is an efficient way to obtain images of marine ships, however, so far there is a lack of suitable open-source visible light datasets of marine ships, which could potentially slow down the development of unmanned ships. To address the problem of insufficient datasets, here we built two instance segmentation visible light datasets of marine ships, MariBoats and MariBoatsSubclass, which could facilitate the current research on instance segmentation of marine ships. Moreover, we applied several existing instance segmentation algorithms based on neural networks to analyze our datasets, but their performances were not satisfactory. To improve the segmentation performance of the existing models on our datasets, we proposed a global and local attention mechanism for neural network models to retain both the global location and semantic information of marine ships, resulting in an average segmentation improvement by 4.3% in terms of mean average precision. Therefore, the presented new datasets and the new attention mechanism will greatly advance the marine ship relevant research and applications.
DOI10.1371/journal.pone.0279248
URL查看原文
收录类别sci
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/67878
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
Z. Q. Sun, C. N. Meng, T. Huang, Z. Q. Zhang and S. J. Chang. Marine ship instance segmentation by deep neural networks using a global and local attention (GALA) mechanism[J]. Plos One,2023,18(2):22.
APA Z. Q. Sun, C. N. Meng, T. Huang, Z. Q. Zhang and S. J. Chang.(2023).Marine ship instance segmentation by deep neural networks using a global and local attention (GALA) mechanism.Plos One,18(2),22.
MLA Z. Q. Sun, C. N. Meng, T. Huang, Z. Q. Zhang and S. J. Chang."Marine ship instance segmentation by deep neural networks using a global and local attention (GALA) mechanism".Plos One 18.2(2023):22.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Marine ship instance(3809KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Z. Q. Sun, C. N. Meng, T. Huang, Z. Q. Zhang and S. J. Chang]的文章
百度学术
百度学术中相似的文章
[Z. Q. Sun, C. N. Meng, T. Huang, Z. Q. Zhang and S. J. Chang]的文章
必应学术
必应学术中相似的文章
[Z. Q. Sun, C. N. Meng, T. Huang, Z. Q. Zhang and S. J. Chang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Marine ship instance segmentation by deep neur.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。