CIOMP OpenIR
Image semantic segmentation approach based on DeepLabV3 plus network with an attention mechanism
Y. Y. Liu, X. T. Bai, J. F. Wang, G. N. Li, J. Li and Z. M. Lv
2024
发表期刊Engineering Applications of Artificial Intelligence
ISSN0952-1976
卷号127页码:8
摘要Image semantic segmentation is a technique that distinguishes different kinds of things in an image by assigning a label to each point in a target category based on its "semantics". The Deeplabv3+ image semantic segmentation method currently in use has high computational complexity and large memory consumption, making it difficult to deploy on embedded platforms with limited computational power. When extracting image feature information, Deeplabv3+ struggles to fully utilize multiscale information. This can result in a loss of detailed information and damage to segmentation accuracy. An improved image semantic segmentation method based on the DeepLabv3+ network is proposed, with the lightweight MobileNetv2 serving as the model's backbone. The ECAnet channel attention mechanism is applied to low-level features, reducing computational complexity and improving target boundary clarity. The polarized self-attention mechanism is introduced after the ASPP module to improve the spatial feature representation of the feature map. Validated on the VOC2012 dataset, the experimental results indicate that the improved model achieved an MloU of 69.29% and a mAP of 80.41%, which can predict finer semantic segmentation results and effectively optimize the model complexity and segmentation accuracy.
DOI10.1016/j.engappai.2023.107260
URL查看原文
收录类别sci
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/67739
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
Y. Y. Liu, X. T. Bai, J. F. Wang, G. N. Li, J. Li and Z. M. Lv. Image semantic segmentation approach based on DeepLabV3 plus network with an attention mechanism[J]. Engineering Applications of Artificial Intelligence,2024,127:8.
APA Y. Y. Liu, X. T. Bai, J. F. Wang, G. N. Li, J. Li and Z. M. Lv.(2024).Image semantic segmentation approach based on DeepLabV3 plus network with an attention mechanism.Engineering Applications of Artificial Intelligence,127,8.
MLA Y. Y. Liu, X. T. Bai, J. F. Wang, G. N. Li, J. Li and Z. M. Lv."Image semantic segmentation approach based on DeepLabV3 plus network with an attention mechanism".Engineering Applications of Artificial Intelligence 127(2024):8.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Image semantic segme(5346KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Y. Y. Liu, X. T. Bai, J. F. Wang, G. N. Li, J. Li and Z. M. Lv]的文章
百度学术
百度学术中相似的文章
[Y. Y. Liu, X. T. Bai, J. F. Wang, G. N. Li, J. Li and Z. M. Lv]的文章
必应学术
必应学术中相似的文章
[Y. Y. Liu, X. T. Bai, J. F. Wang, G. N. Li, J. Li and Z. M. Lv]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Image semantic segmentation approach based on DeepLabV3 plus network with an attention mechanism.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。