CIOMP OpenIR
A Semantic Feature Enhancement-Based Aerial Image Target Detection Method Using Dense RFB-FE
X. Li and J. Zhang
2023
发表期刊International Journal on Semantic Web and Information Systems
ISSN15526283
卷号19期号:1
摘要Aerial image target detection is a challenging task due to the complex backgrounds, dense target distribution, and large-scale differences often present in aerial images. Existing methods often struggle to effectively extract detailed features and address the issue of imbalanced positive and negative samples. To tackle these challenges, an aerial image target detection method (dense RFB-FE-CGAM) based on dense RFB-FE and channel-global attention mechanism (CGAM) was proposed. First, the authors design a shallow feature enhancement module using dense RFB feature multiplexing and expand convolution within an SSD network, improving detailed feature extraction. Second, they introduce CGAM, a global attention module, to enhance semantic feature extraction in backbone networks. Finally, they incorporate a focal loss function for joint training, addressing sample imbalance. In experiments, the method achieved an mAP of 0.755 on the DOTA dataset and recall/ AP values of 0.889/0.906 on HRSC2016, confirming the effectiveness of dense RFB-FE-CGAM for aerial image target detection. © 2023 IGI Global. All rights reserved.
DOI10.4018/IJSWIS.331083
URL查看原文
收录类别sci ; ei
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/67647
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
X. Li and J. Zhang. A Semantic Feature Enhancement-Based Aerial Image Target Detection Method Using Dense RFB-FE[J]. International Journal on Semantic Web and Information Systems,2023,19(1).
APA X. Li and J. Zhang.(2023).A Semantic Feature Enhancement-Based Aerial Image Target Detection Method Using Dense RFB-FE.International Journal on Semantic Web and Information Systems,19(1).
MLA X. Li and J. Zhang."A Semantic Feature Enhancement-Based Aerial Image Target Detection Method Using Dense RFB-FE".International Journal on Semantic Web and Information Systems 19.1(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A Semantic Feature E(1069KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[X. Li and J. Zhang]的文章
百度学术
百度学术中相似的文章
[X. Li and J. Zhang]的文章
必应学术
必应学术中相似的文章
[X. Li and J. Zhang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: A Semantic Feature Enhancement-Based Aerial Im.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。