CIOMP OpenIR
Enhancing Remote Sensing Image Super-Resolution with Efficient Hybrid Conditional Diffusion Model
L. Han; Y. Zhao; H. Lv; Y. Zhang; H. Liu; G. Bi and Q. Han
2023
发表期刊Remote Sensing
ISSN20724292
卷号15期号:13
摘要Recently, optical remote-sensing images have been widely applied in fields such as environmental monitoring and land cover classification. However, due to limitations in imaging equipment and other factors, low-resolution images that are unfavorable for image analysis are often obtained. Although existing image super-resolution algorithms can enhance image resolution, these algorithms are not specifically designed for the characteristics of remote-sensing images and cannot effectively recover high-resolution images. Therefore, this paper proposes a novel remote-sensing image super-resolution algorithm based on an efficient hybrid conditional diffusion model (EHC-DMSR). The algorithm applies the theory of diffusion models to remote-sensing image super-resolution. Firstly, the comprehensive features of low-resolution images are extracted through a transformer network and CNN to serve as conditions for guiding image generation. Furthermore, to constrain the diffusion model and generate more high-frequency information, a Fourier high-frequency spatial constraint is proposed to emphasize high-frequency spatial loss and optimize the reverse diffusion direction. To address the time-consuming issue of the diffusion model during the reverse diffusion process, a feature-distillation-based method is proposed to reduce the computational load of U-Net, thereby shortening the inference time without affecting the super-resolution performance. Extensive experiments on multiple test datasets demonstrated that our proposed algorithm not only achieves excellent results in quantitative evaluation metrics but also generates sharper super-resolved images with rich detailed information. © 2023 by the authors.
DOI10.3390/rs15133452
URL查看原文
收录类别sci ; ei
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/67515
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
L. Han,Y. Zhao,H. Lv,et al. Enhancing Remote Sensing Image Super-Resolution with Efficient Hybrid Conditional Diffusion Model[J]. Remote Sensing,2023,15(13).
APA L. Han,Y. Zhao,H. Lv,Y. Zhang,H. Liu,&G. Bi and Q. Han.(2023).Enhancing Remote Sensing Image Super-Resolution with Efficient Hybrid Conditional Diffusion Model.Remote Sensing,15(13).
MLA L. Han,et al."Enhancing Remote Sensing Image Super-Resolution with Efficient Hybrid Conditional Diffusion Model".Remote Sensing 15.13(2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Enhancing Remote Sen(9624KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[L. Han]的文章
[Y. Zhao]的文章
[H. Lv]的文章
百度学术
百度学术中相似的文章
[L. Han]的文章
[Y. Zhao]的文章
[H. Lv]的文章
必应学术
必应学术中相似的文章
[L. Han]的文章
[Y. Zhao]的文章
[H. Lv]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Enhancing Remote Sensing Image Super-Resolutio.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。