CIOMP OpenIR
Cross-Layer Federated Learning for Lightweight IoT Intrusion Detection Systems
S. Hajj; J. Azar; J. Bou Abdo; J. Demerjian; C. Guyeux; A. Makhoul and D. Ginhac
2023
发表期刊Sensors
ISSN14248220
卷号23期号:16
摘要With the proliferation of IoT devices, ensuring the security and privacy of these devices and their associated data has become a critical challenge. In this paper, we propose a federated sampling and lightweight intrusion-detection system for IoT networks that use K-meansfor sampling network traffic and identifying anomalies in a semi-supervised way. The system is designed to preserve data privacy by performing local clustering on each device and sharing only summary statistics with a central aggregator. The proposed system is particularly suitable for resource-constrained IoT devices such as sensors with limited computational and storage capabilities. We evaluate the system’s performance using the publicly available NSL-KDD dataset. Our experiments and simulations demonstrate the effectiveness and efficiency of the proposed intrusion-detection system, highlighting the trade-offs between precision and recall when sharing statistics between workers and the coordinator. Notably, our experiments show that the proposed federated IDS can increase the true-positive rate up to 10% when the workers and the coordinator collaborate. © 2023 by the authors.
DOI10.3390/s23167038
URL查看原文
收录类别ei
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/67501
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
S. Hajj,J. Azar,J. Bou Abdo,et al. Cross-Layer Federated Learning for Lightweight IoT Intrusion Detection Systems[J]. Sensors,2023,23(16).
APA S. Hajj,J. Azar,J. Bou Abdo,J. Demerjian,C. Guyeux,&A. Makhoul and D. Ginhac.(2023).Cross-Layer Federated Learning for Lightweight IoT Intrusion Detection Systems.Sensors,23(16).
MLA S. Hajj,et al."Cross-Layer Federated Learning for Lightweight IoT Intrusion Detection Systems".Sensors 23.16(2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Cross-Layer Federate(1804KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[S. Hajj]的文章
[J. Azar]的文章
[J. Bou Abdo]的文章
百度学术
百度学术中相似的文章
[S. Hajj]的文章
[J. Azar]的文章
[J. Bou Abdo]的文章
必应学术
必应学术中相似的文章
[S. Hajj]的文章
[J. Azar]的文章
[J. Bou Abdo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Cross-Layer Federated Learning for Lightweight.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。