CIOMP OpenIR
Image Deblurring Based on an Improved CNN-Transformer Combination Network
X. L. Chen, Y. Y. Wan, D. H. Wang and Y. Q. Wang
2023
发表期刊Applied Sciences-Basel
卷号13期号:1页码:15
摘要Recently, using a CNN has been a common practice to restore blurry images due to its strong ability to learn feature information from large-scale datasets. However, CNNs essentially belong to local operations and have the defect of a limited receptive field, which reduces the naturalness of deblurring results. Moreover, CNN-based deblurring methods usually adopt many downsample operations, which hinder detail recovery. Fortunately, transformers focus on modeling the global features, so they can cooperate with CNNs to enlarge the receptive field and compensate for the details lost as well. In this paper, we propose an improved CNN-transformer combination network for deblurring, which adopts a coarse-to-fine architecture as the backbone. To extract the local features and global features simultaneously, the common methods are two blocks connected in parallel or cascaded. Different from these, we design a local-global feature combination block (LGFCB) with a new connecting structure to better use the extracted features. The LGFCB comprises multi-scale residual blocks (MRB) and a transformer block. In addition, we adopt a channel attention fusion block (CAFB) in the encoder path to integrate features. To improve the ability of feature representation, in the decoder path, we introduce a supervised attention block (SAB) operated on restoration images to refine features. Numerous experiments on GoPro and RealBlur datasets indicated that our model achieves remarkable accuracy and processing speed.
DOI10.3390/app13010311
URL查看原文
收录类别sci
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/67386
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
X. L. Chen, Y. Y. Wan, D. H. Wang and Y. Q. Wang. Image Deblurring Based on an Improved CNN-Transformer Combination Network[J]. Applied Sciences-Basel,2023,13(1):15.
APA X. L. Chen, Y. Y. Wan, D. H. Wang and Y. Q. Wang.(2023).Image Deblurring Based on an Improved CNN-Transformer Combination Network.Applied Sciences-Basel,13(1),15.
MLA X. L. Chen, Y. Y. Wan, D. H. Wang and Y. Q. Wang."Image Deblurring Based on an Improved CNN-Transformer Combination Network".Applied Sciences-Basel 13.1(2023):15.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Image Deblurring Bas(4295KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[X. L. Chen, Y. Y. Wan, D. H. Wang and Y. Q. Wang]的文章
百度学术
百度学术中相似的文章
[X. L. Chen, Y. Y. Wan, D. H. Wang and Y. Q. Wang]的文章
必应学术
必应学术中相似的文章
[X. L. Chen, Y. Y. Wan, D. H. Wang and Y. Q. Wang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Image Deblurring Based on an Improved CNN-Tran.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。