CIOMP OpenIR
Understanding efficiency improvements of betavoltaic batteries based on 4H-SiC, GaN, and diamond
R. Z. Zheng; J. B. Lu; Y. Wang; Z. Y. Chen; X. Zhang; X. Y. Li; L. Liang; L. Qin; Y. G. Zeng; Y. Y. Chen and Y. M. Liu
2022
发表期刊Applied Physics Letters
ISSN0003-6951
卷号121期号:10页码:8
摘要Wide-bandgap semiconductors are more advantageous for betavoltaic batteries due to their high conversion efficiency and strong radiation resistance. However, there has been little comprehensive analysis of how wide-bandgap semiconductors lead to efficiency improvements. In this work, we proposed a simulation model to predict the output performance of betavoltaic batteries based on 4H-SiC, hexagonal-GaN, and diamond, in which the Monte Carlo code and COMSOL Multiphysics software were combined. The energy deposition of a 63 Ni source in semiconductors and the electrical characteristics of p-n junctions were investigated and compared. Our simulation results showed that the mass density and atomic number of semiconductor materials will cause the difference in energy deposition distribution, further leading to the different electron-hole pair generation rates. Then, the internal efficiency of batteries is co-determined by the energy band structure, depletion region width, built-in potential barrier, and minority carrier lifetime. The batteries based on wide-bandgap semiconductors can achieve the larger open-circuit voltage, further leading to higher efficiency. Additionally, to optimize the energy converter structure, the output parameters were calculated with a variation of doping concentrations and thicknesses of each region. Under the irradiation of a 63 Ni source, the diamond-based battery with a p-n junction structure has the highest internal efficiency of 31.3%, while the GaN-based battery has the lowest one (16.8%), which can be attributed to the larger carrier recombination rate. Published under an exclusive license by AIP Publishing.
DOI10.1063/5.0102995
URL查看原文
收录类别sci ; ei
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/67216
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
R. Z. Zheng,J. B. Lu,Y. Wang,et al. Understanding efficiency improvements of betavoltaic batteries based on 4H-SiC, GaN, and diamond[J]. Applied Physics Letters,2022,121(10):8.
APA R. Z. Zheng.,J. B. Lu.,Y. Wang.,Z. Y. Chen.,X. Zhang.,...&Y. Y. Chen and Y. M. Liu.(2022).Understanding efficiency improvements of betavoltaic batteries based on 4H-SiC, GaN, and diamond.Applied Physics Letters,121(10),8.
MLA R. Z. Zheng,et al."Understanding efficiency improvements of betavoltaic batteries based on 4H-SiC, GaN, and diamond".Applied Physics Letters 121.10(2022):8.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Understanding effici(3647KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[R. Z. Zheng]的文章
[J. B. Lu]的文章
[Y. Wang]的文章
百度学术
百度学术中相似的文章
[R. Z. Zheng]的文章
[J. B. Lu]的文章
[Y. Wang]的文章
必应学术
必应学术中相似的文章
[R. Z. Zheng]的文章
[J. B. Lu]的文章
[Y. Wang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Understanding efficiency improvements of betav.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。