CIOMP OpenIR
Time Series Analysis-Based Long-Term Onboard Radiometric Calibration Coefficient Correction and Validation for the HY-1C Satellite Calibration Spectrometer
Q. J. Song; C. F. Ma; J. Q. Liu; X. X. Wang; Y. Huang; G. Y. Lin and Z. F. Li
2022
发表期刊Remote Sensing
卷号14期号:19页码:20
摘要The HY-1C Satellite Calibration Spectrometer (SCS) is designed for high-accuracy and high-frequency cross-calibration for sensors mounted on the HY-1C satellite; thus, its onboard calibration consistency and stability are crucial for application. Most onboard calibration errors can be corrected via observation physical models and the prelaunch calibration process. However, the practical SCS calibration coefficient still retains some regularity, which indicates the existence of residual calibration errors. Therefore, in this study, a time series analysis-based method is proposed to eliminate this residual error. First, the SCS onboard calibration method and coefficients are described; second, a seasonal-trend decomposition based on the Loess (STL) method is used to model the SCS calibration coefficient; third, the calibration coefficient is validated, corrected and predicted using the constructed STL model; and finally, a long short-term memory (LSTM) neural network method is also used to model and forecast the calibration coefficient. The analysis results show that: 1. the STL method can effectively model, interpret and correct the SCS calibration coefficient error; and 2. the LSTM method can also fit and forecast the calibration coefficients, while its accuracy and interpretability are poor. The proposed methods provide a data analysis-based perspective to monitor remote sensors and help improve the calibration accuracy.
DOI10.3390/rs14194811
URL查看原文
收录类别sci ; ei
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/67176
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
Q. J. Song,C. F. Ma,J. Q. Liu,et al. Time Series Analysis-Based Long-Term Onboard Radiometric Calibration Coefficient Correction and Validation for the HY-1C Satellite Calibration Spectrometer[J]. Remote Sensing,2022,14(19):20.
APA Q. J. Song,C. F. Ma,J. Q. Liu,X. X. Wang,Y. Huang,&G. Y. Lin and Z. F. Li.(2022).Time Series Analysis-Based Long-Term Onboard Radiometric Calibration Coefficient Correction and Validation for the HY-1C Satellite Calibration Spectrometer.Remote Sensing,14(19),20.
MLA Q. J. Song,et al."Time Series Analysis-Based Long-Term Onboard Radiometric Calibration Coefficient Correction and Validation for the HY-1C Satellite Calibration Spectrometer".Remote Sensing 14.19(2022):20.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Time Series Analysis(5674KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Q. J. Song]的文章
[C. F. Ma]的文章
[J. Q. Liu]的文章
百度学术
百度学术中相似的文章
[Q. J. Song]的文章
[C. F. Ma]的文章
[J. Q. Liu]的文章
必应学术
必应学术中相似的文章
[Q. J. Song]的文章
[C. F. Ma]的文章
[J. Q. Liu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Time Series Analysis-Based Long-Term Onboard R.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。