CIOMP OpenIR
Neural network-based continuous finite-time tracking control for uncertain robotic systems with actuator saturation
Y. Li; H. Y. Sai; M. C. Zhu; Z. B. Xu and D. Q. Mu
2022
发表期刊Asian Journal of Control
ISSN1561-8625
卷号24期号:6页码:3475-3493
摘要This paper proposes a neural network-based continuous finite-time tracking controller for the robust high-precision control of robotic systems under model uncertainty, external disturbance, and actuator saturation. First, a fast nonsingular integral terminal sliding mode (FNITSM) surface is adopted to ensure singularity avoidance and fast finite-time convergence. Considering the presence of model uncertainties and external disturbance, the fully adaptive radial basis function neural network (ARBFNN) is used to approximate and compensate for the unknown dynamic model. Then, a novel continuous fast fractional-order power (CFFOP) approach law is explored to increase the convergence rate and eliminate chattering in the FNITSM control. Meanwhile, the approach law relaxes the requirement on the exact information of the upper bound of the disturbances and their time derivatives. Besides, an actuator saturation compensator (ASO) is proposed to compensate for the limited control input. The stability and finite-time convergence of the proposed controller are analyzed using the Lyapunov theory. Finally, comparative simulations of both the numerical and application examples are conducted to verify the effectiveness of the proposed control schemes, indicating that the CFFOP approach law and ASO can be used effectively for robotic systems.
DOI10.1002/asjc.2744
URL查看原文
收录类别sci ; ei
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/66902
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
Y. Li,H. Y. Sai,M. C. Zhu,et al. Neural network-based continuous finite-time tracking control for uncertain robotic systems with actuator saturation[J]. Asian Journal of Control,2022,24(6):3475-3493.
APA Y. Li,H. Y. Sai,M. C. Zhu,&Z. B. Xu and D. Q. Mu.(2022).Neural network-based continuous finite-time tracking control for uncertain robotic systems with actuator saturation.Asian Journal of Control,24(6),3475-3493.
MLA Y. Li,et al."Neural network-based continuous finite-time tracking control for uncertain robotic systems with actuator saturation".Asian Journal of Control 24.6(2022):3475-3493.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Neural network-based(5446KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Y. Li]的文章
[H. Y. Sai]的文章
[M. C. Zhu]的文章
百度学术
百度学术中相似的文章
[Y. Li]的文章
[H. Y. Sai]的文章
[M. C. Zhu]的文章
必应学术
必应学术中相似的文章
[Y. Li]的文章
[H. Y. Sai]的文章
[M. C. Zhu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Neural network-based continuous finite-time tr.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。