Changchun Institute of Optics,Fine Mechanics and Physics,CAS
Identifying the Active Phenanthrene Degraders and Characterizing Their Metabolic Activities at the Single-Cell Level by the Combination of Magnetic-Nanoparticle-Mediated Isolation, Stable-Isotope Probing, and Raman-Activated Cell Sorting (MMI-SIP-RACS) | |
J. B. Li; D. Y. Zhang; B. Li; C. L. Luo and G. Zhang | |
2022 | |
发表期刊 | Environmental Science & Technology |
ISSN | 0013-936X |
卷号 | 56期号:4页码:2289-2299 |
摘要 | Magnetic-nanoparticle-mediated isolation coupled with stable-isotope probing (MMI-SIP) is a cultivation-independent higher-resolution approach for isolating active degraders in their natural habitats. However, it addresses the community level and cannot directly link the microbial identities, phenotypes, and in situ functions of the active degraders at the single-cell level within complex microbial communities. Here, we used C-13-labeled phenanthrene as the target and developed a new method coupling MMI-SIP and Raman-activated cell sorting (RACS), namely, MMI-SIP-RACS, to identify the active phenanthrene-degrading bacterial cells from polycyclic aromatic hydrocarbon (PAH)-contaminated wastewater. MMI-SIP-RACS significantly enriched the active phenanthrene degraders and successfully isolated the representative single cells. Amplicon sequencing analysis by SIP, C-13 shift of the single cell in Raman spectra, and the 16S rRNA gene from single cell sequencing via RACS confirmed that Novosphingobium was the active phenanthrene degrader. Additionally, MMI-SIP-RACS reconstructed the phenanthrene metabolic pathway and genes of Novosphingobium, including two novel genes encoding phenanthrene dioxygenase and naphthalene dioxygenase. Our findings suggested that MMI-SIP-RACS is a powerful method to efficiently and precisely isolate active PAH degraders from complex microbial communities and directly link their identities to functions at the single-cell level. |
DOI | 10.1021/acs.est.1c04952 |
URL | 查看原文 |
收录类别 | sci ; ei |
语种 | 英语 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/66744 |
专题 | 中国科学院长春光学精密机械与物理研究所 |
推荐引用方式 GB/T 7714 | J. B. Li,D. Y. Zhang,B. Li,et al. Identifying the Active Phenanthrene Degraders and Characterizing Their Metabolic Activities at the Single-Cell Level by the Combination of Magnetic-Nanoparticle-Mediated Isolation, Stable-Isotope Probing, and Raman-Activated Cell Sorting (MMI-SIP-RACS)[J]. Environmental Science & Technology,2022,56(4):2289-2299. |
APA | J. B. Li,D. Y. Zhang,B. Li,&C. L. Luo and G. Zhang.(2022).Identifying the Active Phenanthrene Degraders and Characterizing Their Metabolic Activities at the Single-Cell Level by the Combination of Magnetic-Nanoparticle-Mediated Isolation, Stable-Isotope Probing, and Raman-Activated Cell Sorting (MMI-SIP-RACS).Environmental Science & Technology,56(4),2289-2299. |
MLA | J. B. Li,et al."Identifying the Active Phenanthrene Degraders and Characterizing Their Metabolic Activities at the Single-Cell Level by the Combination of Magnetic-Nanoparticle-Mediated Isolation, Stable-Isotope Probing, and Raman-Activated Cell Sorting (MMI-SIP-RACS)".Environmental Science & Technology 56.4(2022):2289-2299. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Identifying the Acti(2239KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论