Changchun Institute of Optics,Fine Mechanics and Physics,CAS
Deep Reinforcement Learning-Based Relay Selection Algorithm in Free-Space Optical Cooperative Communications | |
S. J. Gao; Y. T. Li and T. W. Geng | |
2022 | |
发表期刊 | Applied Sciences-Basel |
卷号 | 12期号:10页码:14 |
摘要 | Relay-aided free-space optical (FSO) communication systems have the ability of mitigating the adverse effects of link disruption by dividing a long link into several short links. In order to solve the relay selection (RS) problem in a decode and forward (DF) relay-aided FSO system, we model the relay selection scheme as a Markov decision process (MDP). Based on a dueling deep Q-network (DQN), the DQN-RS algorithm is proposed, which aims at maximizing the average capacity. Different from relevant works, the switching loss between relay nodes is considered. Thanks to the advantage of maximizing cumulative rewards by deep reinforcement learning (DRL), our simulation results demonstrate that the proposed DQN-RS algorithm outperforms the traditional greedy method. |
DOI | 10.3390/app12104881 |
URL | 查看原文 |
收录类别 | sci |
语种 | 英语 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/66510 |
专题 | 中国科学院长春光学精密机械与物理研究所 |
推荐引用方式 GB/T 7714 | S. J. Gao,Y. T. Li and T. W. Geng. Deep Reinforcement Learning-Based Relay Selection Algorithm in Free-Space Optical Cooperative Communications[J]. Applied Sciences-Basel,2022,12(10):14. |
APA | S. J. Gao,&Y. T. Li and T. W. Geng.(2022).Deep Reinforcement Learning-Based Relay Selection Algorithm in Free-Space Optical Cooperative Communications.Applied Sciences-Basel,12(10),14. |
MLA | S. J. Gao,et al."Deep Reinforcement Learning-Based Relay Selection Algorithm in Free-Space Optical Cooperative Communications".Applied Sciences-Basel 12.10(2022):14. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Deep Reinforcement L(2822KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论