CIOMP OpenIR
Deep Reinforcement Learning-Based Relay Selection Algorithm in Free-Space Optical Cooperative Communications
S. J. Gao; Y. T. Li and T. W. Geng
2022
发表期刊Applied Sciences-Basel
卷号12期号:10页码:14
摘要Relay-aided free-space optical (FSO) communication systems have the ability of mitigating the adverse effects of link disruption by dividing a long link into several short links. In order to solve the relay selection (RS) problem in a decode and forward (DF) relay-aided FSO system, we model the relay selection scheme as a Markov decision process (MDP). Based on a dueling deep Q-network (DQN), the DQN-RS algorithm is proposed, which aims at maximizing the average capacity. Different from relevant works, the switching loss between relay nodes is considered. Thanks to the advantage of maximizing cumulative rewards by deep reinforcement learning (DRL), our simulation results demonstrate that the proposed DQN-RS algorithm outperforms the traditional greedy method.
DOI10.3390/app12104881
URL查看原文
收录类别sci
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/66510
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
S. J. Gao,Y. T. Li and T. W. Geng. Deep Reinforcement Learning-Based Relay Selection Algorithm in Free-Space Optical Cooperative Communications[J]. Applied Sciences-Basel,2022,12(10):14.
APA S. J. Gao,&Y. T. Li and T. W. Geng.(2022).Deep Reinforcement Learning-Based Relay Selection Algorithm in Free-Space Optical Cooperative Communications.Applied Sciences-Basel,12(10),14.
MLA S. J. Gao,et al."Deep Reinforcement Learning-Based Relay Selection Algorithm in Free-Space Optical Cooperative Communications".Applied Sciences-Basel 12.10(2022):14.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Deep Reinforcement L(2822KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[S. J. Gao]的文章
[Y. T. Li and T. W. Geng]的文章
百度学术
百度学术中相似的文章
[S. J. Gao]的文章
[Y. T. Li and T. W. Geng]的文章
必应学术
必应学术中相似的文章
[S. J. Gao]的文章
[Y. T. Li and T. W. Geng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Deep Reinforcement Learning-Based Relay Select.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。