CIOMP OpenIR
Compressive sensing reconstruction of hyperspectral images based on codec space-spectrum joint dense residual network
S. M. Xiao; Y. Zhang; X. L. Chang and J. J. Xu
2022
发表期刊Iet Image Processing
ISSN1751-9659
页码16
摘要The spatial and spectral information contained in the hyperspectral image (HSI) make it widely used in many fields. However, the sharp increase of HSI data brings enormous pressure to the data storage and real-time transmission. The research shows that hyperspectral compressive sensing (HCS) breaks through the bottleneck of the Nyquist sampling theorem, which can relieve the massive pressure on data storage and real-time transmission. Existing HCS methods try to design advanced compression sampling matrix or reconstruction algorithms, but cannot connect the two through a unified framework. To further improve the image reconstruction quality, a novel codec space-spectrum joint dense residual network (CDS2-DResN) is proposed. The CDS2-DResN is divided into block compression sampling part and reconstruction part. For block compression sampling, coded convolutional layer (CCL) is leveraged to compress and sample HSI. For measurements reconstruction, deconvolution layer is first leveraged to initially reconstruct HSI, and then build a space-spectrum joint network to refine the initial reconstructed HSI. Moreover, the CCL and reconstruction network are optimized via a unified framework, which can simplify the pre-processing and post-processing process of HCS. Extensive experiments have shown that CDS2-DResN has an excellent HCS reconstruction effect at measurement rates 0.25, 0.10, 0.04 and 0.01, respectively.
DOI10.1049/ipr2.12682
URL查看原文
收录类别sci ; ei
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/66480
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
S. M. Xiao,Y. Zhang,X. L. Chang and J. J. Xu. Compressive sensing reconstruction of hyperspectral images based on codec space-spectrum joint dense residual network[J]. Iet Image Processing,2022:16.
APA S. M. Xiao,Y. Zhang,&X. L. Chang and J. J. Xu.(2022).Compressive sensing reconstruction of hyperspectral images based on codec space-spectrum joint dense residual network.Iet Image Processing,16.
MLA S. M. Xiao,et al."Compressive sensing reconstruction of hyperspectral images based on codec space-spectrum joint dense residual network".Iet Image Processing (2022):16.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Compressive sensing (4332KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[S. M. Xiao]的文章
[Y. Zhang]的文章
[X. L. Chang and J. J. Xu]的文章
百度学术
百度学术中相似的文章
[S. M. Xiao]的文章
[Y. Zhang]的文章
[X. L. Chang and J. J. Xu]的文章
必应学术
必应学术中相似的文章
[S. M. Xiao]的文章
[Y. Zhang]的文章
[X. L. Chang and J. J. Xu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Compressive sensing reconstruction of hyperspe.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。