CIOMP OpenIR
基于多尺度多分支特征的动作识别
张磊; 韩广良
2022-11-24
发表期刊液晶与显示
卷号37期号:12页码:1614-1625
摘要针对基于人体骨架序列的动作识别存在的特征提取不充分、不全面及识别准确率不高的问题,本文提出了基于多分支特征和多尺度时空特征的动作识别模型。首先,利用多种算法的结合对原始数据进行了特征增强;其次,将多分支的特征输入形式改进为多分支的融合特征信息并分别输入到网络中,经过一定深度的网络模块后融合在一起;然后,构建多尺度的时空卷积模块作为网络的基本模块,用来提取多尺度的时空特征;最后,构建整体网络模型输出动作类别。实验结果表明,在NTU RGB-D 60数据集的两种划分标准Cross-subject和Cross-view上的识别准确率分别为89.6%和95.1%,在NTU RGB-D 120数据集的两种划分标准Cross-subject和Cross-setup上的识别准确率分别为84.1%和86.0%。与其他算法相对比,本文算法提取到了更为多样化、多尺度的动作特征,动作类别的识别准确率有一定的提升。
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/66222
专题中国科学院长春光学精密机械与物理研究所
作者单位1.中国科学院长春光学精密机械与物理研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
张磊,韩广良. 基于多尺度多分支特征的动作识别[J]. 液晶与显示,2022,37(12):1614-1625.
APA 张磊,&韩广良.(2022).基于多尺度多分支特征的动作识别.液晶与显示,37(12),1614-1625.
MLA 张磊,et al."基于多尺度多分支特征的动作识别".液晶与显示 37.12(2022):1614-1625.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于多尺度多分支特征的动作识别.pdf(1499KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[张磊]的文章
[韩广良]的文章
百度学术
百度学术中相似的文章
[张磊]的文章
[韩广良]的文章
必应学术
必应学术中相似的文章
[张磊]的文章
[韩广良]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 基于多尺度多分支特征的动作识别.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。