CIOMP OpenIR
基于多路径递归增强的显著性目标检测方法
张晓宁; 王雨青; 陈小林
2021-05-15
发表期刊国外电子测量技术
卷号40期号:05页码:1-7
摘要近年来,显著性目标检测在计算机视觉领域中得到了广泛的关注。随着深度学习技术的发展,越来越多先进的算法被提出。目前基于深度学习的显著性目标检测方法主要使用VGG、ResNet等经典骨干网络以及它们基于FCN结构进行的变形作为基础网络。这些方法通过在基础网络上增加复杂的结构学习特征,导致网络训练变得困难,对数据的依赖变强。针对上述问题,设计了基于多路径递归增强的显著性目标检测方法。该方法引入多路径递归连接对基础网络进行增强,将网络前一时刻深层学习的高水平信息通过递归的方式传递到网络当前时刻的浅层,使得网络的浅层也能获得语义信息,从而在不增加过多层和参数的情况下提升网络整体的学习能力。在多个公开数据集上的实验结果表明,该方法对各种基础网络有明显的增强作用(其中VGG-FCN结构增强后在DUT-OMRON数据集上F-measure值提升了近9.1%)。最终结果达到了先进的显著性目标检测水平。
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/66025
专题中国科学院长春光学精密机械与物理研究所
作者单位中国科学院长春光学精密机械与物理研究所
第一作者单位中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
张晓宁,王雨青,陈小林. 基于多路径递归增强的显著性目标检测方法[J]. 国外电子测量技术,2021,40(05):1-7.
APA 张晓宁,王雨青,&陈小林.(2021).基于多路径递归增强的显著性目标检测方法.国外电子测量技术,40(05),1-7.
MLA 张晓宁,et al."基于多路径递归增强的显著性目标检测方法".国外电子测量技术 40.05(2021):1-7.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于多路径递归增强的显著性目标检测方法.(1245KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[张晓宁]的文章
[王雨青]的文章
[陈小林]的文章
百度学术
百度学术中相似的文章
[张晓宁]的文章
[王雨青]的文章
[陈小林]的文章
必应学术
必应学术中相似的文章
[张晓宁]的文章
[王雨青]的文章
[陈小林]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 基于多路径递归增强的显著性目标检测方法.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。