CIOMP OpenIR
基于MPSOC的航空图像目标检测系统设计
任彬; 王宇庆; 丛振; 聂海涛; 杨航
2021-07-13
发表期刊液晶与显示
卷号36期号:07页码:1006-1017
摘要近年来,航空光学成像技术快速发展,机载图像处理系统对于目标检测精度和检测速度的要求越来越高,传统的目标检测算法已经无法满足要求。与此同时,基于深度学习的目标检测算法凭借更优的性能表现得到了学术界的广泛关注。但这类算法往往参数较多,时间复杂度高且移动端移植困难。针对上述问题,本文提出了一种基于Yolo V3算法的MPSOC平台实现方案。利用改进的k均值聚类算法获取新的初始锚框,之后通过改变特征图的大小提高算法对小目标的检测精度,通过基于敏感度的剪枝方法压缩算法大小,最后利用VISDRONE数据集在MPSOC平台进行了验证。实验结果表明:改善的Yolo算法的MAP提高了1.3%,误检率也得到了极大降低。算法经过压缩后,检测速度提高了1倍,体积仅为原来的37%,基本满足了对航空图像目标检测的设计要求,同时为深度学习算法在MPSOC中实现提供了可行的解决方案。
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/66014
专题中国科学院长春光学精密机械与物理研究所
作者单位1.中国科学院长春光学精密机械与物理研究所
2.中国科学院大学
3.中国人民解放军联勤保障部队第946医院医学工程科
推荐引用方式
GB/T 7714
任彬,王宇庆,丛振,等. 基于MPSOC的航空图像目标检测系统设计[J]. 液晶与显示,2021,36(07):1006-1017.
APA 任彬,王宇庆,丛振,聂海涛,&杨航.(2021).基于MPSOC的航空图像目标检测系统设计.液晶与显示,36(07),1006-1017.
MLA 任彬,et al."基于MPSOC的航空图像目标检测系统设计".液晶与显示 36.07(2021):1006-1017.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于MPSOC的航空图像目标检测系统设计(9222KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[任彬]的文章
[王宇庆]的文章
[丛振]的文章
百度学术
百度学术中相似的文章
[任彬]的文章
[王宇庆]的文章
[丛振]的文章
必应学术
必应学术中相似的文章
[任彬]的文章
[王宇庆]的文章
[丛振]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 基于MPSOC的航空图像目标检测系统设计.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。