CIOMP OpenIR
Optimization of multi-source UAV RS agro-monitoring schemes designed for field-scale crop phenotyping
W. X. Zhu; Z. G. Sun; Y. H. Huang; T. Yang; J. Li; K. Y. Zhu; J. Q. Zhang; B. Yang; C. X. Shao; J. B. Peng; S. J. Li; H. L. Hu and X. H. Liao
2021
发表期刊Precision Agriculture
ISSN1385-2256
卷号22期号:6页码:1768-1802
摘要Unmanned aerial vehicle (UAV) system is an emerging remote sensing tool for profiling crop phenotypic characteristics, as it distinctly captures crop real-time information on field scales. For optimizing UAV agro-monitoring schemes, this study investigated the performance of single-source and multi-source UAV data on maize phenotyping (leaf area index, above-ground biomass, crop height, leaf chlorophyll concentration, and plant moisture content). Four UAV systems [i.e., hyperspectral, thermal, RGB, and Light Detection and Ranging (LiDAR)] were used to conduct flight missions above two long-term experimental fields involving multi-level treatments of fertilization and irrigation. For reducing the effects of algorithm characteristics on maize parameter estimation and ensuring the reliability of estimates, multi-variable linear regression, backpropagation neural network, random forest, and support vector machine were used for modeling. Highly correlated UAV variables were filtered, and optimal UAV inputs were determined using a recursive feature elimination procedure. Major conclusions are (1) for single-source UAV data, LiDAR and RGB texture were suitable for leaf area index, above-ground biomass, and crop height estimation; hyperspectral outperformed on leaf chlorophyll concentration estimation; thermal worked for plant moisture content estimation; (2) model performance was slightly boosted via the fusion of multi-source UAV datasets regarding leaf area index, above-ground biomass, and crop height estimation, while single-source thermal and hyperspectral data outperformed multi-source data for the estimation of plant moisture and leaf chlorophyll concentration, respectively; (3) the optimal UAV scheme for leaf area index, above-ground biomass, and crop height estimation was LiDAR + RGB + hyperspectral, while considering practical agro-applications, optical Structure from Motion + customer-defined multispectral system was recommended owing to its cost-effectiveness. This study contributes to the optimization of UAV agro-monitoring schemes designed for field-scale crop phenotyping and further extends the applications of UAV technologies in precision agriculture.
DOI10.1007/s11119-021-09811-0
URL查看原文
收录类别SCI
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/65505
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
W. X. Zhu,Z. G. Sun,Y. H. Huang,et al. Optimization of multi-source UAV RS agro-monitoring schemes designed for field-scale crop phenotyping[J]. Precision Agriculture,2021,22(6):1768-1802.
APA W. X. Zhu.,Z. G. Sun.,Y. H. Huang.,T. Yang.,J. Li.,...&H. L. Hu and X. H. Liao.(2021).Optimization of multi-source UAV RS agro-monitoring schemes designed for field-scale crop phenotyping.Precision Agriculture,22(6),1768-1802.
MLA W. X. Zhu,et al."Optimization of multi-source UAV RS agro-monitoring schemes designed for field-scale crop phenotyping".Precision Agriculture 22.6(2021):1768-1802.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Optimization of mult(4690KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[W. X. Zhu]的文章
[Z. G. Sun]的文章
[Y. H. Huang]的文章
百度学术
百度学术中相似的文章
[W. X. Zhu]的文章
[Z. G. Sun]的文章
[Y. H. Huang]的文章
必应学术
必应学术中相似的文章
[W. X. Zhu]的文章
[Z. G. Sun]的文章
[Y. H. Huang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Optimization of multi-source UAV RS agro-monit.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。