CIOMP OpenIR
Multi-exposure fusion of gray images under low illumination based on low-rank decomposition
T. Nie; L. Huang; H. Liu; X. Li; Y. Zhao; H. Yuan; X. Song and B. He
2021
发表期刊Remote Sensing
ISSN20724292
卷号13期号:2页码:1-21
摘要Existing multi-exposure fusion (MEF) algorithms for gray images under low-illumination cannot preserve details in dark and highlighted regions very well, and the fusion image noise is large. To address these problems, an MEF method is proposed. First, the latent low-rank representation (LatLRR) is used on low-dynamic images to generate low-rank parts and saliency parts to reduce noise after fusion. Then, two components are fused separately in Laplace multi-scale space. Two different weight maps are constructed according to features of gray images under low illumination. At the same time, an energy equation is designed to obtain the optimal ratio of different weight factors. An improved guided filtering based on an adaptive regularization factor is proposed to refine the weight maps to maintain spatial consistency and avoid artifacts. Finally, a high dynamic image is obtained by the inverse transform of low-rank part and saliency part. The experimental results show that the proposed method has advantages both in subjective and objective evaluation over state-of-the-art multi-exposure fusion methods for gray images under low-illumination imaging. 2021 by the authors. Licensee MDPI, Basel, Switzerland.
DOI10.3390/rs13020204
URL查看原文
收录类别SCI ; EI
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/65438
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
T. Nie,L. Huang,H. Liu,et al. Multi-exposure fusion of gray images under low illumination based on low-rank decomposition[J]. Remote Sensing,2021,13(2):1-21.
APA T. Nie.,L. Huang.,H. Liu.,X. Li.,Y. Zhao.,...&X. Song and B. He.(2021).Multi-exposure fusion of gray images under low illumination based on low-rank decomposition.Remote Sensing,13(2),1-21.
MLA T. Nie,et al."Multi-exposure fusion of gray images under low illumination based on low-rank decomposition".Remote Sensing 13.2(2021):1-21.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Multi-exposure fusio(7470KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[T. Nie]的文章
[L. Huang]的文章
[H. Liu]的文章
百度学术
百度学术中相似的文章
[T. Nie]的文章
[L. Huang]的文章
[H. Liu]的文章
必应学术
必应学术中相似的文章
[T. Nie]的文章
[L. Huang]的文章
[H. Liu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Multi-exposure fusion of gray images under low.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。