CIOMP OpenIR
Deep learning virtual Zernike phase contrast imaging for singlet microscopy
Y. Bian; Y. Jiang; W. Deng; R. Shen; H. Shen and C. Kuang
2021
发表期刊AIP Advances
ISSN21583226
卷号11期号:6
摘要Singlet microscopy is very attractive for the development of cost-effective and portable microscopes. In contrast to conventional microscope objectives, which consist of multiple lenses, the manufacturing process for singlet lenses is done without extensive assembling and aligning. In this manuscript, we report a novel singlet virtual Zernike phase contrast microscopy setup for unstained pathological tumor tissue slides. In this setup, the objective consists of only one lens. There is no need for the inset Zernike phase plate, which is even more expensive than a whole brightfield microscopy setup. The Zernike phase contrast is virtually achieved by the deep learning computational imaging method. For the practical virtual Zernike phase contrast microscopy setup, the computational time is less than 100 ms, which is far less than that of other computational quantitative phase imaging algorithms. With a conceptual demo experimental setup, we proved our proposed method to be competitive with a research-level conventional Zernike phase contrast microscope and effective for the unstained transparent pathological tumor tissue slides. It is believed that our deep learning singlet virtual phase contrast microscopy is potential for the development of low-cost and portable microscopes and benefits resource-limited areas. 2021 Author(s).
DOI10.1063/5.0053946
URL查看原文
收录类别SCI ; EI
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/65128
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
Y. Bian,Y. Jiang,W. Deng,et al. Deep learning virtual Zernike phase contrast imaging for singlet microscopy[J]. AIP Advances,2021,11(6).
APA Y. Bian,Y. Jiang,W. Deng,R. Shen,&H. Shen and C. Kuang.(2021).Deep learning virtual Zernike phase contrast imaging for singlet microscopy.AIP Advances,11(6).
MLA Y. Bian,et al."Deep learning virtual Zernike phase contrast imaging for singlet microscopy".AIP Advances 11.6(2021).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Deep learning virtua(5991KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Y. Bian]的文章
[Y. Jiang]的文章
[W. Deng]的文章
百度学术
百度学术中相似的文章
[Y. Bian]的文章
[Y. Jiang]的文章
[W. Deng]的文章
必应学术
必应学术中相似的文章
[Y. Bian]的文章
[Y. Jiang]的文章
[W. Deng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Deep learning virtual Zernike phase contrast i.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。