Changchun Institute of Optics,Fine Mechanics and Physics,CAS
Cascaded hourglass feature fusing network for saliency detection | |
H. Luo; G. Han; X. Wu; P. Liu; H. Yang and X. Zhang | |
2021 | |
发表期刊 | Neurocomputing
![]() |
ISSN | 9252312 |
卷号 | 428页码:206-217 |
摘要 | Convolutional neural networks have been widely applied in saliency detection task because of its powerful feature extraction capability. Most of existing saliency detection models have achieved great progress by aggregating the strong multi-level features. However, it is still a challenging task to design the feature fusing strategy because of the various differences between multi-level features. In this paper, we explore the effect of cascaded pooling operations for saliency detection and propose a novel network to decode saliency cues from multi-level features progressively. We refer to the architecture as "cascaded hourglass" feature fusing network. The proposed network equips with three cascaded sub-modules to capture the multi-scale context and integrate multi-level features progressively. Specifically, we first propose a multi-scale context-aware feature extraction block with different dilated convolutional branches to obtain multi-scale context-aware saliency cues. Then, a hourglass feature fusing block with successive steps of pooling operations is applied to convert the features to multiple feature spaces. Furthermore, we stack a serial of the hourglass feature fusing blocks to purify the multi-level coarse features progressively. Finally, we combine the selective features with cascaded feature decoder to produce final saliency map. Extensive experiments demonstrate the proposed network compares favorably against state-of-the-art methods. Additionally, our model is efficient with the real-time speed of 28 FPS when processing a 400300 image. 2020 Elsevier B.V. |
DOI | 10.1016/j.neucom.2020.11.058 |
URL | 查看原文 |
收录类别 | SCI ; EI |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/65085 |
专题 | 中国科学院长春光学精密机械与物理研究所 |
推荐引用方式 GB/T 7714 | H. Luo,G. Han,X. Wu,et al. Cascaded hourglass feature fusing network for saliency detection[J]. Neurocomputing,2021,428:206-217. |
APA | H. Luo,G. Han,X. Wu,P. Liu,&H. Yang and X. Zhang.(2021).Cascaded hourglass feature fusing network for saliency detection.Neurocomputing,428,206-217. |
MLA | H. Luo,et al."Cascaded hourglass feature fusing network for saliency detection".Neurocomputing 428(2021):206-217. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Cascaded hourglass f(2872KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[H. Luo]的文章 |
[G. Han]的文章 |
[X. Wu]的文章 |
百度学术 |
百度学术中相似的文章 |
[H. Luo]的文章 |
[G. Han]的文章 |
[X. Wu]的文章 |
必应学术 |
必应学术中相似的文章 |
[H. Luo]的文章 |
[G. Han]的文章 |
[X. Wu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论