CIOMP OpenIR
SSDANet: Spectral-Spatial Three-Dimensional Convolutional Neural Network for Hyperspectral Image Classification
X. Zhang,Y. C. Wang,N. Zhang,D. D. Xu,H. Y. Luo,B. Chen and G. L. Ben
2020
发表期刊Ieee Access
ISSN2169-3536
卷号8页码:127167-127180
摘要Recently, the classification of hyperspectral images has made great process. Especially, the classification methods based on three-dimensional convolutional neural network have remarkable performance due to the uniqueness of hyperspectral images. However, the hyperspectral classification still faces great challenges due to a series of problems such as the insufficient extraction of spectral-spatial features, the lack of labeled samples, the large amount of noise, the tendency of overfitting and so on. Therefore, SSDANet is proposed to solve the above problems and promote the further development of hyperspectral classification technology based on deep learning. SSDANet is a spectral-spatial three-dimensional convolutional neural network with a deep and wide structure that can significantly improve classification performance. In SSDANet, the spectral-spatial dense connectivity is put forward to protect the integrity of information. It is made up of the spectral branch and the spatial branch, which can learn and reuse the spectral-spatial features. Besides, the spectral-spatial attention mechanism is proposed to adapt the special structure of hyperspectral images. It can excite important spectral-spatial information and suppress unimportant spectral-spatial information. In addition, a series of optimization methods including data augmentation, batch normalization, dropout, exponential decay learning rate, and L2 regularization are adopted to alleviate the problem of overfitting and improve the classification results. To verify the performance of SSDANet, experiments were implemented on two widely used datasets-Pavia University and Indian Pines. Under the condition of limited labeled samples, the classification evaluation indexes of OA, AA, and Kappa on the two datasets all exceeded 99%, reaching state-of-the-art performance.
DOI10.1109/access.2020.3008029
URL查看原文
收录类别SCI ; EI
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/64905
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
X. Zhang,Y. C. Wang,N. Zhang,D. D. Xu,H. Y. Luo,B. Chen and G. L. Ben. SSDANet: Spectral-Spatial Three-Dimensional Convolutional Neural Network for Hyperspectral Image Classification[J]. Ieee Access,2020,8:127167-127180.
APA X. Zhang,Y. C. Wang,N. Zhang,D. D. Xu,H. Y. Luo,B. Chen and G. L. Ben.(2020).SSDANet: Spectral-Spatial Three-Dimensional Convolutional Neural Network for Hyperspectral Image Classification.Ieee Access,8,127167-127180.
MLA X. Zhang,Y. C. Wang,N. Zhang,D. D. Xu,H. Y. Luo,B. Chen and G. L. Ben."SSDANet: Spectral-Spatial Three-Dimensional Convolutional Neural Network for Hyperspectral Image Classification".Ieee Access 8(2020):127167-127180.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Zhang-2020-SSDANet_ (2448KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[X. Zhang,Y. C. Wang,N. Zhang,D. D. Xu,H. Y. Luo,B. Chen and G. L. Ben]的文章
百度学术
百度学术中相似的文章
[X. Zhang,Y. C. Wang,N. Zhang,D. D. Xu,H. Y. Luo,B. Chen and G. L. Ben]的文章
必应学术
必应学术中相似的文章
[X. Zhang,Y. C. Wang,N. Zhang,D. D. Xu,H. Y. Luo,B. Chen and G. L. Ben]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Zhang-2020-SSDANet_ Spectral-Spatial Three-Dim.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。