CIOMP OpenIR
Research on the Multiagent Joint Proximal Policy Optimization Algorithm Controlling Cooperative Fixed-Wing UAV Obstacle Avoidance
W. W. Zhao,H. R. Chu,X. K. Miao,L. H. Guo,H. H. Shen,C. H. Zhu,F. Zhang and D. X. Liang
2020
发表期刊Sensors
卷号20期号:16页码:16
摘要Multiple unmanned aerial vehicle (UAV) collaboration has great potential. To increase the intelligence and environmental adaptability of multi-UAV control, we study the application of deep reinforcement learning algorithms in the field of multi-UAV cooperative control. Aiming at the problem of a non-stationary environment caused by the change of learning agent strategy in reinforcement learning in a multi-agent environment, the paper presents an improved multiagent reinforcement learning algorithm-the multiagent joint proximal policy optimization (MAJPPO) algorithm with the centralized learning and decentralized execution. This algorithm uses the moving window averaging method to make each agent obtain a centralized state value function, so that the agents can achieve better collaboration. The improved algorithm enhances the collaboration and increases the sum of reward values obtained by the multiagent system. To evaluate the performance of the algorithm, we use the MAJPPO algorithm to complete the task of multi-UAV formation and the crossing of multiple-obstacle environments. To simplify the control complexity of the UAV, we use the six-degree of freedom and 12-state equations of the dynamics model of the UAV with an attitude control loop. The experimental results show that the MAJPPO algorithm has better performance and better environmental adaptability.
DOI10.3390/s20164546
URL查看原文
收录类别SCI ; EI
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/64852
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
W. W. Zhao,H. R. Chu,X. K. Miao,L. H. Guo,H. H. Shen,C. H. Zhu,F. Zhang and D. X. Liang. Research on the Multiagent Joint Proximal Policy Optimization Algorithm Controlling Cooperative Fixed-Wing UAV Obstacle Avoidance[J]. Sensors,2020,20(16):16.
APA W. W. Zhao,H. R. Chu,X. K. Miao,L. H. Guo,H. H. Shen,C. H. Zhu,F. Zhang and D. X. Liang.(2020).Research on the Multiagent Joint Proximal Policy Optimization Algorithm Controlling Cooperative Fixed-Wing UAV Obstacle Avoidance.Sensors,20(16),16.
MLA W. W. Zhao,H. R. Chu,X. K. Miao,L. H. Guo,H. H. Shen,C. H. Zhu,F. Zhang and D. X. Liang."Research on the Multiagent Joint Proximal Policy Optimization Algorithm Controlling Cooperative Fixed-Wing UAV Obstacle Avoidance".Sensors 20.16(2020):16.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Research on the Mult(4536KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[W. W. Zhao,H. R. Chu,X. K. Miao,L. H. Guo,H. H. Shen,C. H. Zhu,F. Zhang and D. X. Liang]的文章
百度学术
百度学术中相似的文章
[W. W. Zhao,H. R. Chu,X. K. Miao,L. H. Guo,H. H. Shen,C. H. Zhu,F. Zhang and D. X. Liang]的文章
必应学术
必应学术中相似的文章
[W. W. Zhao,H. R. Chu,X. K. Miao,L. H. Guo,H. H. Shen,C. H. Zhu,F. Zhang and D. X. Liang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Research on the Multiagent Joint Proximal PolicyOptimization Algorithm Controll.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。