CIOMP OpenIR
KDA3D: Key-Point Densification and Multi-Attention Guidance for 3D Object Detection
J. R. Wang,M. Zhu,B. Wang,D. Y. Sun,H. Wei,C. J. Liu and H. T. Nie
2020
发表期刊Remote Sensing
卷号12期号:11页码:27
摘要In this paper, we propose a novel 3D object detector KDA3D, which achieves high-precision and robust classification, segmentation, and localization with the help of key-point densification and multi-attention guidance. The proposed end-to-end neural network architecture takes LIDAR point clouds as the main inputs that can be optionally complemented by RGB images. It consists of three parts: part-1 segments 3D foreground points and generates reliable proposals; part-2 (optional) enhances point cloud density and reconstructs the more compact full-point feature map; part-3 refines 3D bounding boxes and adds semantic segmentation as extra supervision. Our designed lightweight point-wise and channel-wise attention modules can adaptively strengthen the "skeleton" and "distinctiveness" point-features to help feature learning networks capture more representative or finer patterns. The proposed key-point densification component can generate pseudo-point clouds containing target information from monocular images through the distance preference strategy and K-means clustering so as to balance the density distribution and enrich sparse features. Extensive experiments on the KITTI and nuScenes 3D object detection benchmarks show that our KDA3D produces state-of-the-art results while running in near real-time with a low memory footprint.
DOI10.3390/rs12111895
URL查看原文
收录类别SCI ; EI
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/64636
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
J. R. Wang,M. Zhu,B. Wang,D. Y. Sun,H. Wei,C. J. Liu and H. T. Nie. KDA3D: Key-Point Densification and Multi-Attention Guidance for 3D Object Detection[J]. Remote Sensing,2020,12(11):27.
APA J. R. Wang,M. Zhu,B. Wang,D. Y. Sun,H. Wei,C. J. Liu and H. T. Nie.(2020).KDA3D: Key-Point Densification and Multi-Attention Guidance for 3D Object Detection.Remote Sensing,12(11),27.
MLA J. R. Wang,M. Zhu,B. Wang,D. Y. Sun,H. Wei,C. J. Liu and H. T. Nie."KDA3D: Key-Point Densification and Multi-Attention Guidance for 3D Object Detection".Remote Sensing 12.11(2020):27.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Wang-2020-KDA3D_ Key(7992KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[J. R. Wang,M. Zhu,B. Wang,D. Y. Sun,H. Wei,C. J. Liu and H. T. Nie]的文章
百度学术
百度学术中相似的文章
[J. R. Wang,M. Zhu,B. Wang,D. Y. Sun,H. Wei,C. J. Liu and H. T. Nie]的文章
必应学术
必应学术中相似的文章
[J. R. Wang,M. Zhu,B. Wang,D. Y. Sun,H. Wei,C. J. Liu and H. T. Nie]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Wang-2020-KDA3D_ Key-Point Densification and M.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。