Changchun Institute of Optics,Fine Mechanics and Physics,CAS
基于深度图及分离池化技术的场景复原及语义分类网络 | |
林金花; 姚禹; 王莹 | |
2019 | |
发表期刊 | 自动化学报 |
卷号 | 45期号:11页码:2178-2186 |
摘要 | 在机器视觉感知系统中,从不完整的被遮挡的目标对象中鲁棒重建三维场景及其语义信息至关重要.目前常用方法一般将这两个功能分开处理,本文将二者结合,提出了一种基于深度图及分离池化技术的场景复原及语义分类网络,依据深度图中的RGB-D信息,完成对三维目标场景的重建与分类.首先,构建了一种CPU端到GPU端的深度卷积神经网络模型,将从传感器采样的深度图像作为输入,深度学习摄像机投影区域内的上下文目标场景信息,网络的输出为使用改进的截断式带符号距离函数(Truncated signed distance function, TSDF)编码后的体素级语义标注.然后,使用分离池化技术改进卷积神经网络的池化层粒度结构,设计带细粒度池化的语义分类损失函数,用于回馈网络的语义分类重定位.最后,为增强卷积神经网络的深度学习能力,构建了一种带有语义标注的三维目标场景数据集,以此加强本文所提网络的深度学习鲁棒性.实验结果表明,与目前较先进的网络模型对比,本文网络的重建规模扩大了2.1%,所提深度卷积网络对缺失场景的复原效果较好,同时保证了语义分类的精准度. |
关键词 | 机器视觉感知系统 池化技术 深度图 深度学习 卷积神经网络 |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/63812 |
专题 | 中科院长春光机所知识产出 |
推荐引用方式 GB/T 7714 | 林金花,姚禹,王莹. 基于深度图及分离池化技术的场景复原及语义分类网络[J]. 自动化学报,2019,45(11):2178-2186. |
APA | 林金花,姚禹,&王莹.(2019).基于深度图及分离池化技术的场景复原及语义分类网络.自动化学报,45(11),2178-2186. |
MLA | 林金花,et al."基于深度图及分离池化技术的场景复原及语义分类网络".自动化学报 45.11(2019):2178-2186. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
基于深度图及分离池化技术的场景复原及语义(792KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[林金花]的文章 |
[姚禹]的文章 |
[王莹]的文章 |
百度学术 |
百度学术中相似的文章 |
[林金花]的文章 |
[姚禹]的文章 |
[王莹]的文章 |
必应学术 |
必应学术中相似的文章 |
[林金花]的文章 |
[姚禹]的文章 |
[王莹]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论