CIOMP OpenIR  > 中科院长春光机所知识产出
Single Shot Anchor Refinement Network for Oriented Object Detection in Optical Remote Sensing Imagery
S.Z.Bao; X.Zhong; R.F.Zhu; X.N.Zhang; Z.Q.Li; M.Y.Li
2019
发表期刊Ieee Access
ISSN2169-3536
卷号7页码:87150-87161
摘要Object detection is a challenging task in the field of remote sensing applications due to the complex backgrounds and uncertain orientation of targets. Compared with the horizontal bounding box, the oriented bounding box can provide orientation information while retaining the true size. Most existing oriented object detection methods are based on Faster-RCNN and the other one-stage methods that can achieve real-time speed but have shortcomings in localization and detection accuracy. To further enhance the performance of one-stage methods, we propose an oriented object detection framework that is based on the single shot detector, namely, single shot anchor refinement network (S(2)ARN). The S(2)ARN obtains the accurate detection results by performing two consecutive regressions. More precisely, the multilevel features of the backbone are used to regress the coordinate offsets between the predefined rotated anchors and the ground-truth boxes to generate the refined anchors. The classification and regression subnetworks assigned to the output features are used to perform the second regression to determine the class labels and further adjust the location of the refined anchors. In addition, receptive field amplification modules (RFAMs) are inserted to enlarge the receptive field and extract more discriminative features. Furthermore, in the anchor matching step, angle-related Intersection over Union (ArIoU) is used to calculate the Intersection over Union (IoU) score instead of the traditional method. Benefiting from the multiple regressions and the insensitivity of the ArIoU score to the angle deviation, the angle sampling interval of the rotated anchor can be reduced. The experimental results for the two public datasets, HRSC2016 and UCAS-AOD, demonstrate the effectiveness of the proposed network.
关键词Convolutional neural network (CNN),remote sensing,oriented object,detection,anchor refinement,ship detection
DOI10.1109/access.2019.2924643
URL查看原文
收录类别SCI ; EI
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/63477
专题中科院长春光机所知识产出
推荐引用方式
GB/T 7714
S.Z.Bao,X.Zhong,R.F.Zhu,et al. Single Shot Anchor Refinement Network for Oriented Object Detection in Optical Remote Sensing Imagery[J]. Ieee Access,2019,7:87150-87161.
APA S.Z.Bao,X.Zhong,R.F.Zhu,X.N.Zhang,Z.Q.Li,&M.Y.Li.(2019).Single Shot Anchor Refinement Network for Oriented Object Detection in Optical Remote Sensing Imagery.Ieee Access,7,87150-87161.
MLA S.Z.Bao,et al."Single Shot Anchor Refinement Network for Oriented Object Detection in Optical Remote Sensing Imagery".Ieee Access 7(2019):87150-87161.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Single Shot Anchor R(8082KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[S.Z.Bao]的文章
[X.Zhong]的文章
[R.F.Zhu]的文章
百度学术
百度学术中相似的文章
[S.Z.Bao]的文章
[X.Zhong]的文章
[R.F.Zhu]的文章
必应学术
必应学术中相似的文章
[S.Z.Bao]的文章
[X.Zhong]的文章
[R.F.Zhu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Single Shot Anchor Refinement Network f.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。