CIOMP OpenIR
Topic representation: Finding more representative words in topic models
J.J.Chi; J.H.Ouyang; C.C.Li; X.Y.Dong; X.M.Li; X.H.Wang
2019
发表期刊Pattern Recognition Letters
ISSN0167-8655
卷号123页码:53-60
摘要The top word list, i.e., the top-M words with highest marginal probabilities in a given topic, is the standard topic representation in topic models. Most of recent automatical topic labeling algorithms and popular topic quality metrics are based on it. However, we find, empirically, words in this type of top word list are not always representative. The objective of this paper is to find more representative top word lists for topics. To achieve this, we rerank the words in a given topic by further considering marginal probabilities on words over every other topic. The reranking list of top-M words is used to be a novel topic representation for topic models. We investigate three reranking methodologies, using (1) standard deviation weight, (2) standard deviation weight with topic size and (3) Chi Square chi(2) statistic selection. Experimental results on real-world collections indicate that our representations can extract more representative words for topics, agreeing with human judgements. (C) 2019 Elsevier B.V. All rights reserved.
关键词Topic modeling,Topic representation,Topical word representation,Reranking methodology,Computer Science
DOI10.1016/j.patrec.2019.01.018
URL查看原文
收录类别SCI ; EI
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/63430
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
J.J.Chi,J.H.Ouyang,C.C.Li,et al. Topic representation: Finding more representative words in topic models[J]. Pattern Recognition Letters,2019,123:53-60.
APA J.J.Chi,J.H.Ouyang,C.C.Li,X.Y.Dong,X.M.Li,&X.H.Wang.(2019).Topic representation: Finding more representative words in topic models.Pattern Recognition Letters,123,53-60.
MLA J.J.Chi,et al."Topic representation: Finding more representative words in topic models".Pattern Recognition Letters 123(2019):53-60.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Topic representation(1425KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[J.J.Chi]的文章
[J.H.Ouyang]的文章
[C.C.Li]的文章
百度学术
百度学术中相似的文章
[J.J.Chi]的文章
[J.H.Ouyang]的文章
[C.C.Li]的文章
必应学术
必应学术中相似的文章
[J.J.Chi]的文章
[J.H.Ouyang]的文章
[C.C.Li]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Topic representation Finding more representat.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。