Changchun Institute of Optics,Fine Mechanics and Physics,CAS
Phase diversity algorithm with high noise robust based on deep denoising convolutional neural network | |
D.Q.Li; S.Y.Xu; D.Wang; D.J.Yan | |
2019 | |
发表期刊 | Optics Express |
ISSN | 1094-4087 |
卷号 | 27期号:16页码:22846-22854 |
摘要 | The wave-front phase expanded on the Zernike polynomials is estimated from a pair of images by the use of a maximum-likelihood approach, the in-focus image and the defocus image, which contaminated by noise, will greatly reduce the solution accuracy of the phase diversity (PD) algorithm. In the study, we introduce the deep denoising convolutional neural networks (DnCNNs) into the image preprocessing of PD to denoise the in-focus image and defocus the image containing gaussian white noise to improve the robustness of PD to noise. The simulation results show that the composite PD algorithm with DnCNNs is better than the traditional PD algorithm in both RMSE of phase estimation and SSIM, and the mean of the RMSE of the phase estimation of the improved PD algorithm is reduced by 78.48%, 82.35%, 71.09% and 73.67% compared with the mean of the RMSE of the phase estimation of the traditional PD algorithm. The well-trained DnCNNs runs fast, which does not increase the running time of traditional PD algorithms, and the compound approach may be widely used in various domains, such as the measurements of intrinsic aberrations in optical systems and compensations for atmospheric turbulence. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement |
关键词 | Optics |
DOI | 10.1364/oe.27.022846 |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/63274 |
专题 | 中国科学院长春光学精密机械与物理研究所 |
推荐引用方式 GB/T 7714 | D.Q.Li,S.Y.Xu,D.Wang,et al. Phase diversity algorithm with high noise robust based on deep denoising convolutional neural network[J]. Optics Express,2019,27(16):22846-22854. |
APA | D.Q.Li,S.Y.Xu,D.Wang,&D.J.Yan.(2019).Phase diversity algorithm with high noise robust based on deep denoising convolutional neural network.Optics Express,27(16),22846-22854. |
MLA | D.Q.Li,et al."Phase diversity algorithm with high noise robust based on deep denoising convolutional neural network".Optics Express 27.16(2019):22846-22854. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Phase diversity algo(4263KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[D.Q.Li]的文章 |
[S.Y.Xu]的文章 |
[D.Wang]的文章 |
百度学术 |
百度学术中相似的文章 |
[D.Q.Li]的文章 |
[S.Y.Xu]的文章 |
[D.Wang]的文章 |
必应学术 |
必应学术中相似的文章 |
[D.Q.Li]的文章 |
[S.Y.Xu]的文章 |
[D.Wang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论