CIOMP OpenIR
Background Subtraction With Real-Time Semantic Segmentation
D.D.Zeng; X.Chen; M.Zhu; M.Goesele; A.Kuijper
2019
发表期刊Ieee Access
ISSN2169-3536
卷号7页码:153869-153884
摘要Accurate and fast foreground (FG) object extraction is very important for object tracking and recognition in video surveillance. Although many background subtraction (BGS) methods have been proposed in the recent past, it is still regarded as a tough problem due to the variety of challenging situations that occur in real-world scenarios. In this paper, we explore this problem from a new perspective and propose a novel BGS framework with the real-time semantic segmentation. Our proposed framework consists of two components, a traditional BGS segmenter B and a real-time semantic segmenter S. The BGS segmenter B aims to construct background (BG) models and segments FG objects. The real-time semantic segmenter S is used to refine the FG segmentation outputs as feedbacks for improving the model updating accuracy. B and S work in parallel on two threads. For each input frame I-t, the BGS segmenter B computes a preliminary FG/BG mask B-t. At the same time, the real-time semantic segmenter S extracts the object-level semantics S-t. Then, some specific rules are applied on B-t and S-t to generate the final detection D-t. Finally, the refined FG/BG mask D-t is fed back to update the BG model. The comprehensive experiments evaluated on the CDnet 2014 dataset demonstrate that our proposed method achieves the state-of-the-art performance among all unsupervised BGS methods while operating at the real-time and even performs better than some deep learning-based supervised algorithms. In addition, our proposed framework is very flexible and has the potential for generalization.
关键词Background subtraction,foreground object detection,semantic,segmentation,video surveillance,density-estimation,Computer Science,Engineering,Telecommunications
DOI10.1109/access.2019.2899348
收录类别SCI ; EI
语种英语
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/62833
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
D.D.Zeng,X.Chen,M.Zhu,et al. Background Subtraction With Real-Time Semantic Segmentation[J]. Ieee Access,2019,7:153869-153884.
APA D.D.Zeng,X.Chen,M.Zhu,M.Goesele,&A.Kuijper.(2019).Background Subtraction With Real-Time Semantic Segmentation.Ieee Access,7,153869-153884.
MLA D.D.Zeng,et al."Background Subtraction With Real-Time Semantic Segmentation".Ieee Access 7(2019):153869-153884.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Background Subtracti(6097KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[D.D.Zeng]的文章
[X.Chen]的文章
[M.Zhu]的文章
百度学术
百度学术中相似的文章
[D.D.Zeng]的文章
[X.Chen]的文章
[M.Zhu]的文章
必应学术
必应学术中相似的文章
[D.D.Zeng]的文章
[X.Chen]的文章
[M.Zhu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Background Subtraction With Real Time Semantic.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。