Changchun Institute of Optics,Fine Mechanics and Physics,CAS
Background Subtraction With Real-Time Semantic Segmentation | |
D.D.Zeng; X.Chen; M.Zhu; M.Goesele; A.Kuijper | |
2019 | |
发表期刊 | Ieee Access |
ISSN | 2169-3536 |
卷号 | 7页码:153869-153884 |
摘要 | Accurate and fast foreground (FG) object extraction is very important for object tracking and recognition in video surveillance. Although many background subtraction (BGS) methods have been proposed in the recent past, it is still regarded as a tough problem due to the variety of challenging situations that occur in real-world scenarios. In this paper, we explore this problem from a new perspective and propose a novel BGS framework with the real-time semantic segmentation. Our proposed framework consists of two components, a traditional BGS segmenter B and a real-time semantic segmenter S. The BGS segmenter B aims to construct background (BG) models and segments FG objects. The real-time semantic segmenter S is used to refine the FG segmentation outputs as feedbacks for improving the model updating accuracy. B and S work in parallel on two threads. For each input frame I-t, the BGS segmenter B computes a preliminary FG/BG mask B-t. At the same time, the real-time semantic segmenter S extracts the object-level semantics S-t. Then, some specific rules are applied on B-t and S-t to generate the final detection D-t. Finally, the refined FG/BG mask D-t is fed back to update the BG model. The comprehensive experiments evaluated on the CDnet 2014 dataset demonstrate that our proposed method achieves the state-of-the-art performance among all unsupervised BGS methods while operating at the real-time and even performs better than some deep learning-based supervised algorithms. In addition, our proposed framework is very flexible and has the potential for generalization. |
关键词 | Background subtraction,foreground object detection,semantic,segmentation,video surveillance,density-estimation,Computer Science,Engineering,Telecommunications |
DOI | 10.1109/access.2019.2899348 |
收录类别 | SCI ; EI |
语种 | 英语 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/62833 |
专题 | 中国科学院长春光学精密机械与物理研究所 |
推荐引用方式 GB/T 7714 | D.D.Zeng,X.Chen,M.Zhu,et al. Background Subtraction With Real-Time Semantic Segmentation[J]. Ieee Access,2019,7:153869-153884. |
APA | D.D.Zeng,X.Chen,M.Zhu,M.Goesele,&A.Kuijper.(2019).Background Subtraction With Real-Time Semantic Segmentation.Ieee Access,7,153869-153884. |
MLA | D.D.Zeng,et al."Background Subtraction With Real-Time Semantic Segmentation".Ieee Access 7(2019):153869-153884. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Background Subtracti(6097KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[D.D.Zeng]的文章 |
[X.Chen]的文章 |
[M.Zhu]的文章 |
百度学术 |
百度学术中相似的文章 |
[D.D.Zeng]的文章 |
[X.Chen]的文章 |
[M.Zhu]的文章 |
必应学术 |
必应学术中相似的文章 |
[D.D.Zeng]的文章 |
[X.Chen]的文章 |
[M.Zhu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论