Changchun Institute of Optics,Fine Mechanics and Physics,CAS
Siamese Network Using Adaptive Background Superposition Initialization for Real-Time Object Tracking | |
J.N.Zhu; T.Chen; J.T.Cao | |
2019 | |
发表期刊 | Ieee Access |
ISSN | 2169-3536 |
卷号 | 7页码:119454-119464 |
摘要 | Object tracking has become widespread in many fields, such as autonomous vehicles, video surveillance and robotics. However, it is far from the requirements for real-world applications. Recently, Siamese network based trackers have attracted high attention by balancing accuracy and speed. Because these trackers only learn a similarity measurement model via off-line training, the exemplar branch has insufficient discriminant information to adapt to the constantly changing appearance of the target in subsequent frames. We propose a Siamese network based tracker that improves upon tracking performance as follows. First, an adaptive background superposition initialization is proposed and used in the exemplar branch to make full use of the limited prior information in the first frame. Second, a light-weight convolutional neural network is proposed and applied as the tracker's backbone; it compresses the dimensions of the feature to ensure speed and accuracy. Third, the channel attention module is introduced into our tracker and integrated with adaptive background superposition initialization. The feature map of the original exemplar image and its background changed image are adjusted by a channel attention model and fused to enhance the representation of the exemplar image. The GOT-10k dataset is applied to train our tracker. Finally, experiments on the object tracking benchmark (OTB) and visual object tracking (VOT) demonstrate the effectiveness of our proposed approach compared with state-of-the-art trackers. |
关键词 | Adaptive background superposition initialization,channel attention,module,object tracking,Siamese network,Computer Science,Engineering,Telecommunications |
DOI | 10.1109/access.2019.2937166 |
收录类别 | SCI |
语种 | 英语 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/62720 |
专题 | 中国科学院长春光学精密机械与物理研究所 |
推荐引用方式 GB/T 7714 | J.N.Zhu,T.Chen,J.T.Cao. Siamese Network Using Adaptive Background Superposition Initialization for Real-Time Object Tracking[J]. Ieee Access,2019,7:119454-119464. |
APA | J.N.Zhu,T.Chen,&J.T.Cao.(2019).Siamese Network Using Adaptive Background Superposition Initialization for Real-Time Object Tracking.Ieee Access,7,119454-119464. |
MLA | J.N.Zhu,et al."Siamese Network Using Adaptive Background Superposition Initialization for Real-Time Object Tracking".Ieee Access 7(2019):119454-119464. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Siamese Network Usin(2165KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[J.N.Zhu]的文章 |
[T.Chen]的文章 |
[J.T.Cao]的文章 |
百度学术 |
百度学术中相似的文章 |
[J.N.Zhu]的文章 |
[T.Chen]的文章 |
[J.T.Cao]的文章 |
必应学术 |
必应学术中相似的文章 |
[J.N.Zhu]的文章 |
[T.Chen]的文章 |
[J.T.Cao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论