CIOMP OpenIR
Hyperspectral Remote Sensing Image Classification Based on Three-Dimensional Convolution Neural Network Combined with Conditional Random Field Optimization
Li, Zhuqiang; Zhu, Ruifei; Gao, Fang; Meng, Xiangyu; An, Yuan; Zhong, Xing
2018
发表期刊Guangxue Xuebao/Acta Optica Sinica
ISSN2532239
卷号38期号:8
摘要Hyperspectral remote sensing image classification is usually based on the spectral features of objects, but there are plenty of spatial informations in the images. The effective use of spatial information can significantly improve the image classification effect. Because of the special structure of convolution neural network (CNN), CNN has been successfully applied in the field of image classification, and has a good effect on the classification of two-dimensional images. How to improve classification performance through deep learning combined with spatial-spectral information is a key point. Combining the spatial features and spectral information of hyperspectral images, we have developed a three-dimensional convolution neural network model (3D-CNN) for hyperspectral pixel classification, and the multi labels conditional random field is optimized on the basis of the initial classification. Three general open hyperspectral datasets (Indian Pines dataset, Pavia University dataset, Pavia Center dataset) are selected for testing. Experiments show that the accuracy is greatly improved after the classification optimization, the overall accuracy can reach 98%, and the Kappa coefficient reaches 97.2%. 2018, Chinese Lasers Press. All right reserved.
关键词Classification (of information) Convolution Deep learning Hyperspectral imaging Image classification Image enhancement Independent component analysis Random processes Remote sensing Spectroscopy Statistical tests
DOI10.3788/AOS201838.0828001
收录类别EI
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/60692
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
Li, Zhuqiang,Zhu, Ruifei,Gao, Fang,et al. Hyperspectral Remote Sensing Image Classification Based on Three-Dimensional Convolution Neural Network Combined with Conditional Random Field Optimization[J]. Guangxue Xuebao/Acta Optica Sinica,2018,38(8).
APA Li, Zhuqiang,Zhu, Ruifei,Gao, Fang,Meng, Xiangyu,An, Yuan,&Zhong, Xing.(2018).Hyperspectral Remote Sensing Image Classification Based on Three-Dimensional Convolution Neural Network Combined with Conditional Random Field Optimization.Guangxue Xuebao/Acta Optica Sinica,38(8).
MLA Li, Zhuqiang,et al."Hyperspectral Remote Sensing Image Classification Based on Three-Dimensional Convolution Neural Network Combined with Conditional Random Field Optimization".Guangxue Xuebao/Acta Optica Sinica 38.8(2018).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Hyperspectral Remote(1448KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Zhuqiang]的文章
[Zhu, Ruifei]的文章
[Gao, Fang]的文章
百度学术
百度学术中相似的文章
[Li, Zhuqiang]的文章
[Zhu, Ruifei]的文章
[Gao, Fang]的文章
必应学术
必应学术中相似的文章
[Li, Zhuqiang]的文章
[Zhu, Ruifei]的文章
[Gao, Fang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Hyperspectral Remote Sensing Image Classificat.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。