CIOMP OpenIR
A Mixed Property-Based Automatic Shadow Detection Approach for VHR Multispectral Remote Sensing Images
Han, Hongyin1,2; Han, Chengshan1; Xue, Xucheng1; Hu, Changhong1; Huang, Liang1,2; Li, Xiangzhi1; Lan, Taiji1; Wen, Ming1,2
2018-10-01
发表期刊APPLIED SCIENCES-BASEL
ISSN2076-3417
卷号8期号:10页码:28
通讯作者Xue, Xucheng(xue0818@163.com)
摘要Shadows in very high-resolution multispectral remote sensing images hinder many applications, such as change detection, target recognition, and image classification. Though a wide variety of significant research has explored shadow detection, shadow pixels are still more or less omitted and are wrongly confused with vegetation pixels in some cases. In this study, to further manage the problems of shadow omission and vegetation misclassification, a mixed property-based shadow index is developed for detecting shadows in very high-resolution multispectral remote sensing images based on the difference of the hue component and the intensity component between shadows and nonshadows, and the difference of the reflectivity of the red band and the near infrared band between shadows and vegetation cover in nonshadows. Then, the final shadow mask is achieved, with an optimal threshold automatically obtained from the index image histogram. To validate the effectiveness of our approach for shadow detection, three test images are selected from the multispectral WorldView-3 images of Rio de Janeiro, Brazil, and are tested with our method. When compared with other investigated standard shadow detection methods, the resulting images produced by our method deliver a higher average overall accuracy (95.02%) and a better visual sense. The highly accurate data show the efficacy and stability of the proposed approach in appropriately detecting shadows and correctly classifying shadow pixels against the vegetation pixels for very high-resolution multispectral remote sensing images.
关键词invariant color space multispectral images shadow detection shadow omission threshold vegetation misclassification very high-resolution
DOI10.3390/app8101883
关键词[WOS]RESOLUTION SATELLITE IMAGES ; COLOR ; FEATURES
收录类别SCI
语种英语
资助项目Key Project on National Defense Science and Technology Innovation of the Chinese Academy of Sciences[41275487-X]
项目资助者Key Project on National Defense Science and Technology Innovation of the Chinese Academy of Sciences
WOS研究方向Chemistry ; Materials Science ; Physics
WOS类目Chemistry, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号WOS:000448653700178
出版者MDPI
引用统计
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/60552
专题中国科学院长春光学精密机械与物理研究所
通讯作者Xue, Xucheng
作者单位1.Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Jilin, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Han, Hongyin,Han, Chengshan,Xue, Xucheng,et al. A Mixed Property-Based Automatic Shadow Detection Approach for VHR Multispectral Remote Sensing Images[J]. APPLIED SCIENCES-BASEL,2018,8(10):28.
APA Han, Hongyin.,Han, Chengshan.,Xue, Xucheng.,Hu, Changhong.,Huang, Liang.,...&Wen, Ming.(2018).A Mixed Property-Based Automatic Shadow Detection Approach for VHR Multispectral Remote Sensing Images.APPLIED SCIENCES-BASEL,8(10),28.
MLA Han, Hongyin,et al."A Mixed Property-Based Automatic Shadow Detection Approach for VHR Multispectral Remote Sensing Images".APPLIED SCIENCES-BASEL 8.10(2018):28.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A Mixed Property-Bas(5876KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Han, Hongyin]的文章
[Han, Chengshan]的文章
[Xue, Xucheng]的文章
百度学术
百度学术中相似的文章
[Han, Hongyin]的文章
[Han, Chengshan]的文章
[Xue, Xucheng]的文章
必应学术
必应学术中相似的文章
[Han, Hongyin]的文章
[Han, Chengshan]的文章
[Xue, Xucheng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: A Mixed Property-Based Automatic Shadow Detect.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。