CIOMP OpenIR  > 中科院长春光机所知识产出
光电跟踪平台中惯性元件误差建模与补偿技术研究
骞微著
2016-10-01
发表期刊中国科学院长春光学精密机械与物理研究所
期号6
摘要惯性测量元件在光电跟踪平台伺服控制回路中,作为测量载体在惯性空间角速率的敏感元件,为控制系统提供速率反馈。因此,提高惯性测量元件的精度对提升光电跟踪平台的整体精度有十分重要的意义。光纤陀螺由于测量精度高、性能稳定等优点目前常被用作稳定平台的测量元件。由于加工精度的限制和安装时人为因素的影响,惯性元件的敏感方向与载体的轴向存在角度偏差,由此产生安装误差。针对这个问题,本文给出了一种基于速率实验的三轴陀螺安装误差的标定补偿方法。先推导出陀螺角速率输出的数学表达式。然后利用三轴精密惯导测试转台,设计速率实验对安装误差进行标定。在标定实验中,对光纤陀螺的三个轴向分别取一系列的角速率点,采集数据。最后,利用采集到的数据,解算出安装误差补偿公式的未知参数。为补偿光纤陀螺的随机漂移误差,本文给出了一种结合ARMA模型和Kalman算法的补偿方法。这是一种基于参数辨识的误差补偿方法。首先,利用自相关系数和偏相关系数对光纤陀螺的原始输出信号进行了平稳性检验并使用差分运算进行了平稳化处理。根据AIC准则和Burg方法,建立光纤陀螺信号的AR(3)模型。根据建立的AR(3)模型,推导出Kalman算法中相应的状态方程。针对传统Kalman算法需要先验噪声统计量的问题,结合Sage-Husa方法形成自适应Kalman滤波算法,并对光纤陀螺信号进行滤波。最后,用最小二乘法拟合出Allan方差中各误差项的系数,进行补偿效果评价。计算结果表明,经过补偿后,光纤陀螺输出的均方差从0.0034(°/s)~2降低到了1.4339e-04(°/s)~2。本文给出了一种结合小波分析和神经网络的光纤陀螺建模方法。这是一种基于非参数辨识的误差方法,对非线性模型具有很高的拟合精度。先使用小波分析中的Mallat分解算法提取出光纤陀螺信号中的主趋势项,对其误差余项进行了重构。之后将重构后的信号作为神经网络的目标输出,将原始输出作为神经网络的输入。为了提高神经网络的收敛速度和其拟合精度,本文采用了增加动量因子和自适应调整学习速率的方法来改进网络训练过程。通过性能验证,说明网络对陀螺误差具有良好的预测估计能力。分析结果表明,经过小波神经网络方法补偿后,光纤陀螺输出均方差降低到了3.7636e-05(°/s)~2。要优于其他传统方法。
关键词光纤陀螺 安装误差 Arma模型 Kalman算法 小波神经网络
语种中文
文献类型期刊论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/58022
专题中科院长春光机所知识产出
推荐引用方式
GB/T 7714
骞微著. 光电跟踪平台中惯性元件误差建模与补偿技术研究[J]. 中国科学院长春光学精密机械与物理研究所,2016(6).
APA 骞微著.(2016).光电跟踪平台中惯性元件误差建模与补偿技术研究.中国科学院长春光学精密机械与物理研究所(6).
MLA 骞微著."光电跟踪平台中惯性元件误差建模与补偿技术研究".中国科学院长春光学精密机械与物理研究所 .6(2016).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[骞微著]的文章
百度学术
百度学术中相似的文章
[骞微著]的文章
必应学术
必应学术中相似的文章
[骞微著]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。