Changchun Institute of Optics,Fine Mechanics and Physics,CAS
基于FPGA的无创伤血液成分光谱数据采集系统设计 | |
其他题名 | Design of data acquisition system in non-invasive blood components analysis by near infrared spectroscopy based on FPGA |
郭嘉 | |
学位类型 | 硕士 |
导师 | 卢启鹏 |
2015-10 | |
学位授予单位 | 中国科学院大学 |
学位专业 | 光学工程 |
关键词 | 近红外光谱 无创伤血液成分检测 Fpga 数据采集 小波去噪 |
摘要 | 血液成分检测是诊断疾病的重要手段。常规的血液成分检测采用抽血的方法,不但给病人带来痛苦和交叉感染的风险,而且不能实现连续监测。因此,人体血液成分的“无创、连续监测”无疑为人们所迫切企盼。近红外光谱在无创伤血液成分检测方面具有很大的优势,如无试剂、无污染、无创伤、可连续监测。然而,国内外学者在此领域耗费了大量的时间和精力,依然不能使近红外无创伤血液成分检测技术达到临床应用的水平。 主要问题在于:血液中葡萄糖、胆固醇、甘油三酯等组分的信号非常微弱,而且血液的近红外光谱受到人体组织背景的严重干扰。为克服背景干扰,陈星旦提出了“血流容积差光谱相减法”,该方法对光谱仪器的数据采集系统提出了如下要求:(1)采集系统必须能够同时采集所有波长点处的信号;(2)采集系统每秒钟至少需采集50幅光谱图;(3)采集系统的信噪比要显著高于10000:1。依据实验室前期研究成果,采用16元阵列式探测器同时采集16个独立像元的方法,既保证所有波长点的光强信号采集自同一时刻,又能使仪器具有较高的采集速度和信噪比。这就要求仪器的数据采集系统能够同时对16个通道的血液脉搏波数据进行高速、高信噪比的采集。 本文针对无创伤血液成分检测仪器中的基于FPGA的高速、多通道光谱数据采集系统进行了研究。文章主要包括光谱数据采集系统的硬件设计和FPGA逻辑设计,具体研究内容和主要结论如下: 1)对数据采集系统的硬件部分进行了详细设计,用高精度A/D芯片实现 16通道数据的并行采集;采用SRAM芯片实现数据储存;采用USB芯片CY7C68013实现数据通信,采用FPGA作为系统的控制核心,实现对系统各个部分的控制。 2)对数据采集系统的FPGA程序进行了详细设计,包括A/D控制模块、乒乓RAM控制模块、SRAM控制模块和USB数据通信模块,并将各模块综合成完整的数据采集系统控制程序,实现了16通道人体血液脉搏波数据的高速、高信噪比采集。 3)使用该系统对一个电压为1.357V的稳压源进行了测量,在19531Hz采样率下,系统信噪比可以达在40000:1。在该采样率下,对一名男性进行了脉搏波信号的采集,系统每秒采集305幅光谱图,实验证明,该系统可以采集到高信噪比的人体血液脉搏波信号。满足无创伤血液成分检测仪器对于其光谱数据采集系统的要求。 4)研究了脉搏波信号滤波处理的方法,采用小波分析的方法进行脉搏波信号去噪可以获得较好的效果。通过多组对比实验表明,使用sym8小波进行两层分解,函数形式采用rigrsure,门限阈值采用硬阈值可以获得最好的滤波效果,滤波后的量化信噪比可达151.1331,均方误差为5.61E-05。 |
其他摘要 | Blood component testing is an important method to diagnose disease. Routine blood component detection using blood sampling, which not only bring pain and cross infection to the patients, but also cannot immediately get result. Therefore, the “human blood components noninvasive, continuous monitoring” is for people urgently hope. Near-infrared absorption spectroscopy (NIRS) technique has a great advantage in the detection of non traumatic blood components, such as no reagents, no pollution, no trauma and continuous monitoring. However, domestic and foreign scholars in this field have spent a lot of time, still can‟t make the near infrared non-invasive blood component analysis technology to achieve the level of clinical application. Main problems are: the signal of blood biochemical composition is very weak, such as glucose, cholesterol and triglyceride. More over all sorts of organizations has big influence on the near infrared spectral interference of blood. We proposed “blood volume spectral subtraction method” to eliminate human tissue background interferences, “blood volume spectral subtraction method” was proposed. However, the spectral instrument measuring system should meet the following requirements: (1) spectrum system must collect all wavelengths signal at the same time; (2) spectrometer can collect 50 amplitude spectrum per second at least; (3) the signal-to-noise ratio of spectrometer is at least 10000:1. On the basis of the early stage of the laboratory research results, the detector we use can collect 16 independent wavelengths at the same time, so it can ensure all wavelengths of light intensity signal be collect at the same time , more over insure the instrument has high acquisition speed and signal-to-noise ratio. So it requires the data acquisition system of the instrument can simultaneously collect 16 channel blood pulse wave data at a high speed and high signal-to-noise ratio. In this paper, the data acquisition system of high speed and multi-channel spectral data in non-invasive blood component analysis is studied. This paper mainly includes the hardware and software design of the data acquisition system. The main conclusions were as follows: 1) This article introduced the hardware system of the high-speed multi-channel data acquisition system of near infrared non-invasive blood components analysis in detail, and the design plan is proposed. The hardware system consists of two pieces eight channels A/D chips to achieve 16 channel data acquisition; Data storage is realized by using an SRAM chips; Data communication is realized by using USB chip CY7C68013, FPGA is used as the control core of system. 2) Design the FPGA logic of the high-speed multi-channel data acquisition system of near infrared non-invasive blood components analysis in detail, which contain A/D control module, ping-pong RAM control module, SRAM control module and USB data communication module, using Verilog HDL language to complete the design of the various modules, realized the 16 channel human blood pulse wave data acquisition of high speed, high signal-to-noise ratio. 3) A 1.357 V voltage stabilizer were measured by the system, the spectrum data acquisition system can collect 16 channels signal parallel and fast under the sampling frequency of 19531Hz and the repetitive signal-to-noise ratio is over 40000:1. The system can collect 305 spectrograms per second, more over it can get high SNR human body blood pulse wave signal under the same circumstances. After filtering the quantitative SNR can be up to 151.1331, the mean square error(mse) can be 5.61E-05. 5) We studied the denoising method of the pulse wave signal and found the wavelet method is effective. Experiments shows that using sym8 to two layers of decomposition, the wavelet function form use the rigrsure, threshold by hard threshold can get the best filtering effect. |
语种 | 中文 |
文献类型 | 学位论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/49316 |
专题 | 中科院长春光机所知识产出 |
推荐引用方式 GB/T 7714 | 郭嘉. 基于FPGA的无创伤血液成分光谱数据采集系统设计[D]. 中国科学院大学,2015. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
郭嘉.pdf(2073KB) | 学位论文 | 开放获取 | CC BY-NC-SA | 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[郭嘉]的文章 |
百度学术 |
百度学术中相似的文章 |
[郭嘉]的文章 |
必应学术 |
必应学术中相似的文章 |
[郭嘉]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论