CIOMP OpenIR  > 中科院长春光机所知识产出
基于迭代方法的的高精度非球面补偿镜设计与检测
李乐
学位类型硕士
导师杨怀江
2014-11
学位授予单位中国科学院大学
学位专业光学
关键词非球面检测 补偿镜 迭代 公差分配 折射率均匀性
摘要由于非球面元件比球面元件具有更多的设计自由度,因此在高数值孔径投影光刻物镜和高精度相机中,广泛使用非球面元件以简化系统结构并提升系统成像像质。虽然非球面具有诸多优点,但是高精度非球面面形检测一直是一大难题,限制了非球面元件的大范围应用。本文针对高数值孔径投影光刻物镜的非球面元件,利用补偿镜法对其进行高精度面形检测,形成了一套完整的补偿镜设计方法和后续数据处理方法。论文的主要工作如下: 1、非球面补偿镜的设计。在分析了待测非球面的非球面度和非球面度梯度等特点的基础上,将ZEMAX光学设计软件和MATLAB结合起来进行了补偿镜的结构设计。具体工作包括: (a)补偿镜初始结构的求解。利用三级像差理论,提出了一种平行光入射情形下的基于迭代思想的新方法来求解两片透镜形式的补偿镜初始结构。首先随机选择补偿镜部分结构参数,并根据补偿镜与非球面的Seidel系数之和的绝对值最小来获取仅剩的两个未知参数。然后将非球面在补偿器第一面位置处的高斯像高与假设的平行光入射高度进行比较,迭代至二者之差小于预设误差值为止,确定最佳的平行光入射高度。最后重复上述操作得到最终的初始结构。 (b)初始结构的优化。利用ZEMAX中的波像差优化函数,并将折射率等数据设置成与实际实验环境相匹配的结果,在双通光路中优化,便可以得到比较理想的补偿镜结构。 (c)公差分配。不仅考虑了设计、加工和装配公差,也考虑了材料公差、检测公差、环境公差和补偿镜调节过程可能引入的误差,实现了对非球面面形检测精度的系统评估。 2、补偿镜自身的检测。精确测量了玻璃毛坯材料的折射率和折射率均匀性数据。在补偿镜加工完成之后,利用“猫眼—共焦”法精确测量其各个面的曲率半径,利用LenScan镜面定位仪精确测量两片补偿透镜的中心厚。并利用所测数据重新进行光学复算,得到最终的补偿镜结构。 3、非球面面形的检测实验及后续数据处理。利用旋转平移法对实验平台的平面参考镜进行绝对标定,利用实验平台完成了间隔的测量和非球面面形的测量,并对折射率均匀性引入的面形误差进行了数据补偿。
其他摘要Because aspheric components have more design freedom than spherical components, aspheric components are used widely to simplify system organization and improve imaging quality in high numerical aperture projection lithographic lens and high accuracy cameras. Although aspheric components have so many advantages, high accuracy aspheric surface test is a problem for its long-range application all the time. This paper focuses on an aspheric component of a high numerical aperture projection lithographic lens. We use compensator method to test its surface. A relative integral method including compensator design and subsequent data processing is proposed. The following aspects are the primary coverage of this paper: 1. Compensator design of aspheric surface. Based on the analysis of sag deviation and sag slope of tested aspheric surface, we design the structure of compensator by MATLAB and an optical design software-ZEMAX. The major work is presented as follows: (a) The solution of initial compensator structure. A new method based on iteration idea is proposed to solve initial compensator structure made up of two lenses. This method is available to the case when the light source is parallel light. Firstly partial structure parameters are assumed randomly and the other left two unknown parameters can be calculated when the absolute value of the sum of Seidel coefficients of the compensator and tested aspheric surface is smallest. Then with the help of MATLAB we compare the Gauss image height of aspheric surface at the first surface of the compensator with the height of parallel light until the iterative error is less than preinstall. Thus the optimum height of parallel light is fixed. Finally we can retry steps above mentioned to calculate the final initial compensator structure. (b) The optimization of initial compensator structure. When the refracting index data is matched to laboratory environment, a relative perfect compensator structure can be got in double-pass beam path by wavefront merit function in ZEMAX. (c) Tolerance fit. The conventional tolerance is considered, such as design error, fabrication error and assemblage error. Material error, test error, environmental error and adjustment error are also in consideration. Thus the systemic precision evaluation of aspheric surface test is realized. 2. The compensator self-test. The refracting index data and the refracting index homogeneity data of blank glass are measured precisely. After the fabrication of compensator is completed, the radiuses of curvature of compensator are measured by “cat eye-confocal method”. The central thickness of compensator is measured by LenScan mirror alignment instrument. The final compensator structure is got after optic recalculation with the data from compensator self-test. 3. The aspheric surface test and subsequent data processing. The flat reference lens from experimental flatform is calibrated absolutely by rotational translational method. The distance and the aspheric surface test are accomplished base on the experimental flatform. The wavefront error from refracting index homogeneity is compensated.
语种中文
文献类型学位论文
条目标识符http://ir.ciomp.ac.cn/handle/181722/44662
专题中科院长春光机所知识产出
推荐引用方式
GB/T 7714
李乐. 基于迭代方法的的高精度非球面补偿镜设计与检测[D]. 中国科学院大学,2014.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
李乐.pdf(3433KB) 开放获取ODC PDDL请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李乐]的文章
百度学术
百度学术中相似的文章
[李乐]的文章
必应学术
必应学术中相似的文章
[李乐]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。