Changchun Institute of Optics,Fine Mechanics and Physics,CAS
Incorporating mutation scheme into krill herd algorithm for global numerical optimization | |
Wang G. G.; Guo L. H.; Wang H. Q.; Duan H.; Liu L.; Li J. | |
2014 | |
发表期刊 | Neural Computing & Applications
![]() |
ISSN | ISBN/0941-0643 |
卷号 | 24期号:3-4页码:853-871 |
摘要 | Recently, Gandomi and Alavi proposed a robust meta-heuristic optimization algorithm, called Krill Herd (KH), for global optimization. To improve the performance of the KH algorithm, harmony search (HS) is applied to mutate between krill during the process of krill updating instead of physical diffusion used in KH. A novel hybrid meta-heuristic optimization approach HS/KH is proposed to solve global numerical optimization problem. HS/KH combines the exploration of harmony search (HS) with the exploitation of KH effectively, and hence, it can generate the promising candidate solutions. The detailed implementation procedure for this improved meta-heuristic method is also described. Fourteen standard benchmark functions are applied to verify the effects of these improvements, and it is demonstrated that, in most cases, the performance of this hybrid meta-heuristic method (HS/KH) is superior to, or at least highly competitive with, the standard KH and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, HS, KH, PSO, and SGA. The effect of the HS/FA parameters is also analyzed. |
收录类别 | SCI ; EI |
语种 | 英语 |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/44074 |
专题 | 中科院长春光机所知识产出 |
推荐引用方式 GB/T 7714 | Wang G. G.,Guo L. H.,Wang H. Q.,et al. Incorporating mutation scheme into krill herd algorithm for global numerical optimization[J]. Neural Computing & Applications,2014,24(3-4):853-871. |
APA | Wang G. G.,Guo L. H.,Wang H. Q.,Duan H.,Liu L.,&Li J..(2014).Incorporating mutation scheme into krill herd algorithm for global numerical optimization.Neural Computing & Applications,24(3-4),853-871. |
MLA | Wang G. G.,et al."Incorporating mutation scheme into krill herd algorithm for global numerical optimization".Neural Computing & Applications 24.3-4(2014):853-871. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Wang-2014-Incorporat(1720KB) | 开放获取 | CC BY-ND | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论