Changchun Institute of Optics,Fine Mechanics and Physics,CAS
同步辐射光束线水平偏转压弯机构关键技术研究及性能测试 | |
高飒飒 | |
学位类型 | 博士 |
导师 | 卢启鹏 |
2014-07 | |
学位授予单位 | 中国科学院大学 |
学位专业 | 光学工程 |
摘要 | 同步辐射装置是一种大科学装置,能同时容纳数百人进行科学和技术实验。主要由光源、光束线和实验站构成。根据实验站对光束的要求,光束线对同步辐射光源产生的同步辐射光进行偏转、准直、分光和聚焦等处理,并将同步光传输到实验站。 第三代同步辐射光源具有很小的电子束发射度,使得光束以很小的掠入射角入射在光学元件上,导致成像镜面在光束线方向的长度大幅增加,达到甚至超过1米。采用传统的磨制镜直接加工,很难得到高精度的面形。相比之下,压弯镜有半径可调,表面精度高和易于制造等优点,从而得到广泛的应用。第 代同步辐射光源的主要特点是大量使用插入件,以波荡器为主。同步辐射装置上常规使用的压弯镜多是水平放置、光束垂直偏转,反射面朝上或者朝下。但是对于波荡器光源来说,从保持光源的横向相干性和亮度的角度看,水平偏转压弯镜更具优势,此外水平偏转压弯镜还可以在K-B聚焦镜装置中用作水平方向聚焦镜。第三代同步辐射光源对光束线的压弯准直聚焦镜提出了很高的要求,开展水平偏转压弯机构关键技术研究及性能测试,在提高压弯机构性能的同时,有助于提高光束线的通量和能量分辨率,具有极其重要的现实意义。 本论文以上海光源建设中所需求的水平偏转压弯镜为目标,重点研究了包括高性能水平偏转压弯机构的机理、补偿机制及热缓释技术等在内的关键技术,并对水平偏转压弯机构的性能测试方法进行了研究。具体研究内容如下: 1)水平偏转压弯机构的受力情况较为复杂,相对于镜子所要求的极小面形误差和定位误差,镜子的性能对受力的变化是非常敏感的。本论文在研究压弯机构压弯理论的基础上,根据水平偏转压弯机构的设计指标,确定了压弯方式及压力点,使用点槽面支撑系统来实现其空间位置调节,提出了针对压弯镜自重和压弯机构自身重力的平衡补偿装置,并进行了水平偏转压弯机构的设计。 2)水平偏转压弯镜压弯过程中,除了受到自身重力、平衡力和压弯力矩之外,还受到压弯机构本身结构、接触部分的摩擦以及局部变形产生的影响。这些因素导致工程分析结果与实际试验结果存在着较大的误差。为了提高分析精度,本文构建了从驱动机构、夹持机构到压弯光学元件的整体有限元分析模型,引入非线性分析的方法,模拟了水平偏转压弯机构的压弯过程,并针对压弯机构的压辊和镜面、驱动杆和套筒等关键接触部位进行了分析,得到的模拟结果更接近实际情况。 3)第三代光源的高亮度给光束线设备带来的问题是极高的辐射功率和极高的功率密度,如何保证光学元件不受损伤并且稳定地正常工作,是需要解决的关键技术之一。对水平偏转压弯镜在热载下的热变形进行系统的分析,将热传导、热对流及热辐射三种热传递方式进行综合考虑,最大限度地模拟了该结构在热载下的真实状态。在此基础上确定了冷却方案,不仅削弱了热载效应,水平偏转压弯镜达到热平衡的时间得到大幅降低,在提高实验效率的同时能够获得稳定有效的实验结果。 4)水平偏转压弯机构的检测与安装是整个光束线安装调试的一个重要环节,而水平偏转压弯镜面形精度要求之高以及镜长的增加,都提高了检测的难度。使用上海光源自行研制的LTP-1200对水平偏转压弯镜在压弯状态下的面形进行测试,同时采用激光干涉仪、分光镜和反光镜等,搭建了一套离线检测方案对其运动精度进行精确的测量,各项指标均符合设计要求,运行稳定。 本文重点针对提高水平偏转压弯机构性能的关键技术及性能检测方法进行了研究。在整个研究过程中,完成了水平偏转压弯机构的设计,对重力影响、压弯机构本身以及热载影响等做了具体的探讨和研究,并利用有限元软件模拟了系统的压弯过程与热力学过程。本文的研究成果对压弯机构的设计具有很好的参考价值,为后期光束线的工程设计提供了重要的理论依据。 |
其他摘要 | Synchrotron Radiation Facility is one kind of large scientific platforms that hundreds of people can do science and technology experimentations simultaneously. It mainly composes of a light source, beam lines and experimental stations. According to the requirements of experimental stations, beamline deflects, collimates, spectral, and focuses the synchrotron radiation light. Finally, it transmits the synchrotron radiation light to the experimental stations. For the third generation synchrotron radiation, the grazing angle is so small that it needs longer mirror. Generally, the length of the mirror is up to 1 meter. It’s hard for us to use the traditional grinding method to process this kind of mirror with high precision surface shape. Compared with the grinding mirror, the bending mirror has more advantages, for example, the bending radius can be adjusted, higher precision surface shape and so on. Currently, more and more large mirrors using the bending techniques are used on synchrotron radiation facility. The third synchrotron radiation facility is equipped with lots of insertion devices, which mainly is dominated by Undulator. Usually, the bending mirrors used in synchrotron radiation facility are placed horizontally with the reflect face up or down and the beam deflects vertically. But for the undulator sources, horizontal deflection bender has more advantages. On the other hand, horizontal deflection mirrors can be used in K-B focusing system. The third generation synchrotron radiation proposes higher requirements on the collimating and focusing mirrors. So it is a practical and useful subject to study the key technology of horizontal deflection bender and doing the performance testing, which not only can improve the bender’s performances, but also can improve the flux and energy resolution of the beamline. In this paper, based on the horizontal deflection bender demanded in the construction of SSRF, we researched the key technology of horizontal deflection bender including the bending theory, compensating mechanism and the thermal releasing technology. After this, we did some corresponding performance testing. The main research contents and conclusions can be listed as follows: 1) The horizontal deflection bender has more complex stress condition than vertical deflection bender. The performance of the mirror is very sensitive to the stress relative to the small slope errors and location errors. Based on the research of bending theory, the bending mode and pressure points are determined according to the requirements of the horizontal deflection bender. A point-grove-plane adjustment system are used to realize the adjusting the spatial location of the horizontal deflection bender. Then, a scheme of gravity compensation aiming at the gravity of mirror-self and bender are proposed. Finally, the design was carried out. 2) During the process of bending, the bending mirror undertakes the gravity of mirror-self, counterbalancing force and bending moment, in addition, the bender-self, contact friction parts and local deform have influences on the bending, which result in that the analysis results have errors with the practical results. In order to improve the accuracy the analysis, the finite element model including the drive mechanism, the clamping mechanism and the mirror is constructed. Nonlinear contact analysis methods are applied to study the process of the bending, and the results are much closer to the actual situation. 3) The third synchrotron radiation has high brightness, which impose high radiation power and power density on equipments used in beamline. How to protect these optical elements from damage caused by heat and work well is one of the main key technologies that need to solve. Based on heat-release method, thermal-structural coupling analysis which considers thermal conduction, thermal radiation and thermal convection together is carried out. The reasonable cooling method is adopted to reduce the heating loads and the time to reach thermal equilibrium, not only can improve the experiments efficiency, but also can obtain better results. 4) The installing and testing of the horizontal deflection bender is very important. Because the accuracy requirements of the bending mirror is very high and the mirror is so big, it is difficult to test. We used LTP-1200 to test the radius and slope errors of the bending mirror during the process of bending. And an off-line performance testing scheme for horizontal deflection bender is designed to analyze the motion precision of the bender. The thesis mainly did the key technology research and performance testing of the horizontal deflection bender. During the whole process of the study, we realized the design of horizontal deflection bender and did a specific study and research on the influence of gravity, bender-self, heating loads and so on. Then finite element software is used to simulate the bending and thermodynamic processes of the system. These results have very important significance and provide relevant theoretical reference for the further engineering design of beamline. |
语种 | 中文 |
文献类型 | 学位论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/41406 |
专题 | 中科院长春光机所知识产出 |
推荐引用方式 GB/T 7714 | 高飒飒. 同步辐射光束线水平偏转压弯机构关键技术研究及性能测试[D]. 中国科学院大学,2014. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
高飒飒.pdf(5260KB) | 开放获取 | CC BY-NC-SA | 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[高飒飒]的文章 |
百度学术 |
百度学术中相似的文章 |
[高飒飒]的文章 |
必应学术 |
必应学术中相似的文章 |
[高飒飒]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论